DOI QR코드

DOI QR Code

전자파(電磁波)에 노출된 생쥐의 해마에서 운동이 AMPK, ERK-1/2, p38 단백 발현 변화에 미치는 생체 영향

The Expression changes of AMPK, ERK-1/2, and p38 protein associated with Exercise in the Mouse hippocampus exposed to Radiofrequency Radiation

  • 이민선 (신한대학교 간호대학) ;
  • 박옥진 (신한대학교 카이로프랙틱학과) ;
  • 김현택 (선문대학교 일반대학원) ;
  • 김명주 (단국대학교 의과대학 해부학교실)
  • 투고 : 2020.02.06
  • 심사 : 2020.03.20
  • 발행 : 2020.03.28

초록

전자파에 노출된 생쥐에서 운동이 해마에 미치는 생체영향을 확인하고자 뇌의 신경세포에서 많이 발현되는 AMPKα, p-AMPKα, ERK1/2, p-ERK1/2, p38, p-p38 단백질 발현의 변화를 해마에서 조사하였다. 10주 동안 생쥐들을 정상군, 운동군, 전자파 노출군, 전자파 노출 및 자발운동군으로 나누어 비교하였다. 생쥐들은 835 MHz의 주파수를 송출하는 Wave Exposer V20을 사용해 전자파에 노출시켰고, 각 분자들에 대한 단백질 발현량의 차이는뇌의 해마를 분리해 Western blot으로 조사했다. 각각의 분자들과 인산화 분자들에서 유의한 단백질 발현의 증가는 운동군에서 있었으며, 전자파 노출 및 운동군에서는 이들 분자들의 발현이 통계적으로 유의한 수준으로 현저히 감소하였다. 따라서, 본 연구는 기억을 담당하는 해마에서 운동에 의해 신경가소성이 증가할 수 있지만, 전자파에 노출되면 기억 및 인지기능이 영향을 받을 수 있어 전자파가 실제 세포수준에서 기억력에 영향을 미칠 수 있음을 보였다. 앞으로 전자파가 치매에 미치는 임상적 영향에 대한 연구를 진행한다면 흥미 있는 결과를 기대할 수 있을 것이다.

To determine the biological effects of exercise on hippocampus in mice brain exposed to radiofrequency radiaton (RF), the expression of AMPKα, p-AMPKα, ERK1/2, p-ERK1/2, p38, and p-p38 protein in the mouse exposed to RF were investigated in the hippocampal tissues, Western blot method was used to compare the protein expression levels for each molecule. Significant increases in protein expression of individual and phosphorylated molecules were observed in the spontaneous exercise group, and the expression of these molecules was notably decreased in the RF exposure and spontaneous exercise group. This study shows that neuroplasticity can be increased by exercise in hippocampus that is responsible for memory, but memory and cognitive function may be affected by exposure to RF. We may expect clinically interesting results on dementia or Alzheimer disease if we proceed further investigation on the effect of RF.

키워드

참고문헌

  1. J. S. Lee & H. Y..Choi. (2018). Ministry of Science and ICT, Korea Internet & Security Agency, 2018 Internet Usage Survey, National Approved Statistics No. 120005
  2. S. K. Myung. (2015). Smartphones and health. J Korean Med Assoc. 58(1), :42-48. DOI: 10.5124/jkma.2015.58.1.42
  3. L. Hardell. (2017). World Health Organization, radiofrequency radiation and health - a hard nut to crack (Review). Int J Oncol. 51(2), 405-413. DOI: 10.3892/ijo.2017.4046
  4. P. S. Deshmukh et al. (2015). Cognitive impairment and neurogenotoxic effects in rats exposed to low-intensity microwave radiation. Int J Toxicol. 34(3), 284-290. DOI: 10.1177/1091581815574348.
  5. M. Klose et al. (2014). Effects of early-onset radiofrequency electromagnetic field exposure (GSM 900 MHz) on behavior and memory in rats. Radiat Res. 182(4), 435-447. DOI: 10.1667/RR13695.1.
  6. M. Foerster, A. Thielens, W. Joseph, M. Eeftens & M. Roosli. (2018). A Prospective Cohort Study of Adolescents' Memory Performance and Individual Brain Dose of Microwave Radiation from Wireless Communication. Environ Health Perspect. 126(7), 077007. DOI: 10.1289/EHP2427.
  7. J. A, Boulant, & H. N. Demieville. (1977). Responses of thermosensitive preoptic and septal neurons to hippocampal and brain stem stimulation. J Neurophysiol. 40(6), 1356-1368. DOI: 10.1152/jn.1977.40.6.1356.
  8. S. Y. Yau et al. (2011). Hippocampal neurogenesis and dendritic plasticity support running-improved spatial learning and depression-like behaviour in stressed rats. PloS one, 6(9), e24263. DOI : 10.1371/journal.pone.0024263.
  9. V. A. Redila & B. R. Christie. (2006). Exercise-induced changes in dendritic structure and complexity in the adult hippocampal dentate gyrus. Neuroscience 137, 1299-1307. DOI : 10.1016/j.neuroscience.2005.10.050.
  10. K. Erickson et al. (2011). Exercise training increases size of hippocampus and improves memory. Proc. Natl. Acad. Sci. USA. 108, 3017-3022. DOI : 10.1073/pnas.1015950108.
  11. B. S. McEwen et al. (1993). Adrenal steroids and plasticity of hippocampal neurons: toward an understanding of underlying cellular and molecular mechanisms. Cell Mol Neurobiol 13, 457-482. DOI: 10.1007/bf00711583.
  12. C. Marinangeli et al. (2018). AMP-Activated Protein Kinase Is Essential for the Maintenance of Energy Levels during Synaptic Activation. Science. 9, 1-13. DOI : 10.1016/j.isci.2018.10.006.
  13. S. Y. Yau et al. (2014). Physical exercise-induced hippocampal neurogenesis and antidepressant effects are mediated by the adipocyte hormone adiponectin. Proc Natl Acad Sci U S A. 111(44), 15810-15815. DOI : 10.1073/pnas.1415219111.
  14. T. G. Boulton et al. (1991). ERKs: a family of protein-serine/threonine kinases that are activated and tyrosine phosphorylated in response to insulin and NGF. Cell. 65(4), 663-675. DOI : 10.1016/0092-8674(91)90098-j.
  15. G. M. Thomas & R. L. Huganir. (2004). MAPK cascade signalling and synaptic plasticity. Nat Rev Neurosci. 5(3):173-183. DOI : 10.1038/nrn1346.
  16. M. S. Lee, C. S. Oh, J. H. Ryu, J.-K. Lee & M. J. Kim. (2018). Alterations in Spontaneous Movement, Corticosterone, and Cytokines in Mice Exposed to 835 MHz Radiofrequency Radiation. Korean J Phys Anthropol, 31(1), 19-26. DOI : 10.11637/kjpa.2018.31.1.19.
  17. S. P. Loughran et al. (2016). Bioelectromagnetics Research within an Australian Context: The Australian Centre for Electromagnetic Bioeffects Research (ACEBR). Int J Environ Res Public Health. 13(10), 967. DOI : 10.3390/ijerph13100967.
  18. G. J. Rubin, R. Nieto-Hernandez, & S. Wessely. (2010). Idiopathic environmental intolerance attributed to electromagnetic fields (formerly 'electromagnetic hypersensitivity'): An updated systematic review of provocation studies. Bioelectromagnetics. 31(1), 1-11. DOI : 10.1002/bem.20536.
  19. B. E. Crute, K. Seefeld, J. Gamble, B. E. Kemp, & L. A. Witters. (1998). Functional domains of the alpha1 catalytic subunit of the AMP-activated protein kinase. J Biol Chem. 273(52):35347-35354. DOI : 10.1074/jbc.273.52.35347.
  20. S. A. Hawley et al. (1996). Characterization of the AMP-activated protein kinase kinase from rat liver and identification of threonine 172 as the major site at which it phosphorylates AMP-activated protein kinase. J Biol Chem. 271(44), 27879-27887. DOI : 10.1074/jbc.271.44.27879.
  21. M. Momcilovic, S. P. Hong & M. Carlson. (2006). Mammalian TAK1 activates Snf1 protein kinase in yeast and phosphorylates AMP-activated protein kinase in vitro. J Biol Chem. 281(35), 25336-25343. DOI : 10.1074/jbc.M604399200.
  22. A. Woods et al. (2005). $Ca^{2+}$/calmodulin- dependent protein kinase kinase-beta acts upstream of AMP-activated protein kinase in mammalian cells. Cell Metab. 2(1), 21-33. DOI : 10.1016/j.cmet.2005.06.005.
  23. B. B. Kahn, T. Alquier, D. Carling & D. G. Hardie. (2005). AMP-activated protein kinase: ancient energy gauge provides clues to modern understanding of metabolism. Cell Metab. 1(1), 15-25. DOI : 10.1016/j.cmet.2004.12.003.
  24. K. S. Lee, J. S. Choi, S. Y. Hong, T. H. Son & K. Yu. (2008). Mobile phone electromagnetic radiation activates MAPK signaling and regulates viability in Drosophila. Bioelectromagnetics. 2008 Jul;29(5), 371-379. DOI : 10.1002/bem.20395.
  25. M. R. Bruchas, M. Xu & C. Chavkin. (2008). Repeated swim stress induces kappa opioid-mediated activation of extracellular signal-regulated kinase 1/2. Neuroreport. 19(14), 1417-1422. DOI : 10.1097/WNR.0b013e32830dd655.
  26. Q. Ding, Z. Ying & F. Gómez-Pinilla. (2011). Exercise influences hippocampal plasticity by modulating brain-derived neurotrophic factor processing. Neuroscience. 192, 773-780. DOI : 10.1016/j.neuroscience.2011.06.032.
  27. H. S. Um et al. (2011). Treadmill exercise represses neuronal cell death in an aged transgenic mouse model of Alzheimer's disease. Neurosci Res. 69(2), 161-173. DOI : 10.1016/j.neures.2010.10.004.