참고문헌
- Bach, Q.-V., Trinh, T. N., Tran, K.-Q., and Thi, N. B. D., "Pyrolysis Characteristics and Kinetics of Biomass Torrefied in Various Atmospheres", Energy Convers. Manage., 141, 72-78 (2017). https://doi.org/10.1016/j.enconman.2016.04.097
- Hamzehkolaei, F. T., and Amjady, N., "A Techno-economic Assessment for Replacement of Conventional Fossil Fuel Based Technologies in Animal Farms with Biogas Fueled CHP Units", Renew. Energy, 118, 602-614 (2018). https://doi.org/10.1016/j.renene.2017.11.054
- Maliutina, K., Tahmasebi, A, Yu, J., and Saltykov, S. N., "Comparative Study on Flash Pyrolysis Characteristics of Microalgal and Lignocellulosic Biomass in Entrained-flow Reactor", Energy Convers. Manage., 151, 426-438 (2017). https://doi.org/10.1016/j.enconman.2017.09.013
- Mullen, C. A., Boateng, A. A., Goldberg, N. M., Lima, I. M., Laird, D. A., and Hicks, K. B., "Bio-oil and Bio-char Production from Corn Cobs and Stover by Fast Pyrolysis", Biomass Bioenerg., 34, 67-74 (2010). https://doi.org/10.1016/j.biombioe.2009.09.012
- Kim, S.-S., Shenoy, A., and Agblevor, F., "Themogravimetric and Kinetic Study of Pinyon Pine in the Various Gases", Bioresour. Technol., 156, 297-302 (2014). https://doi.org/10.1016/j.biortech.2014.01.066
- Ly, H. V., Lim, D.-H., Sim, J. W., Kim, S.-S., and Kim, J., "Catalytic Pyrolysis of Tulip Tree (Liriodendron) in Bubbling Fluidized-bed Reactor for Upgrading Bio-oil using Dolomite Catalyst", Energy, 162, 564-575 (2018). https://doi.org/10.1016/j.energy.2018.08.001
- Ly, H. V., Kim, S.-S., Kim, J., Choi, J. H., and Woo, H. C., "Effect of Acid Washing on Pyrolysis of Cladophora Socialis Alga in Microtubing Reactor", Energy Convers. Manag., 106, 260-267 (2015). https://doi.org/10.1016/j.enconman.2015.09.041
- Ly, H. V., Kim, S.-S., Woo, H. C., Choi, J. H., Suh, D. J., and Kim, J., "Fast Pyrolysis of Macroalga Saccharina japonica in a Bubbling Fluidized-bed Reactor for Bio-oil Production", Energy, 93, 1436-1446 (2015). https://doi.org/10.1016/j.energy.2015.10.011
- Yang, H.-S., Hyun, J.-H., Yoon, B.-Y., and Kim, H.-K., "Comparison of Yield of Pyrolysis Oil by Operating Condition in Batch Type Pyrolysis using Plastic Wastes", J. Korea Soc. Waste Manag., 36(4), 361-367 (2019). https://doi.org/10.9786/kswm.2019.36.4.361
- Elkhalifa, S., Al-Ansari, T., Mackey, H. R., and McKay, G., "Food Waste to Biochars through Pyrolysis: A Review", Resour. Conserv. Recy., 144, 310-320 (2019). https://doi.org/10.1016/j.resconrec.2019.01.024
- Choi, M. K., Kang, S. J., Kim, H. S., Park, H. C., and Choi, H. S., "Numerical Study on Injection Characteristics of Bio-oil using Twin Fluid Nozzle for Bio-oil Gasification Reactor", J. Korea Soc. Waste Manag., 36(3), 267-277 (2019). https://doi.org/10.9786/kswm.2019.36.3.267
- He, Z., and Wang, X., "Hydrodeoxygenation of Model Compounds and Catalytic Systems for Pyrolysis Bio-oils Upgrading", Catal. Sustain. Energy, 1, 28-52 (2012).
- Le, T. A., Ly, H. V., Kim, J., Kim, S.-S., Choi, J. H., Woo, H. C., and Othman, M. R., "Hydrodeoxygenation of 2-furyl Methyl Ketone as a Model Conpound in Bio-oil from Pyrolysis of Saccharaina japonica Alga in Fixe-bed Reactor", Chem. Eng. J., 105, 157-163 (2014).
- Gupta, J., Papadikis, K., Kozhevnikov, I. V., and Konysheva, E. Y., "Exploring the potential of red mud and beechwood co-processing for the upgrading of fast pyrolysis vapours", J. Anal. Appl. Pyrol. 111, 35-43 (2017).
- Ly, H. V., Kim, J., Hwang, H. T., Choi, J. H., Woo, H. C., and Kim, S.-S., "Catalytic Hydrodeoxygenation of Fast Pyrolysis Bio-Oil from Saccharina japonica Alga for Bio-Oil Upgrading", Catalysts, 9, 1043 (2019). https://doi.org/10.3390/catal9121043
- Graca, I., Lopes, J. M., Cerqueira, H. S., and Ribeiro, M. F., "Bio-oils upgrading for second generation biofuels", Ind. Eng. Chem. Res., 52, 275-287 (2013). https://doi.org/10.1021/ie301714x
- Ly, H. V., Choi, J. H., Woo, H. C., Kim, S.-S., and Kim, J., "Upgrading Bio-oil by Catalytic Fast Pyrolysis of Acid-washed Saccharina japonica Alga in a Fluidized-bed Reactor", Renew. Energy, 133, 11-22 (2019). https://doi.org/10.1016/j.renene.2018.09.103
- Park, H. J., Heo, H. S., Yim, J. H., Jeon, J. K., Ko, Y. S., Kim, S. S., and Park, Y. K. "Catalytic Pyrolysis of Japanese Larch using Spent HZSM-5", Korean J. Chem. Eng., 27(1), 73-75 (2010). https://doi.org/10.1007/s11814-009-0344-y
- Ly, H. V., Park, J. W., Kim, S.-S., Hwang, H. T., Kim, J., and Woo, H. C., "Catalytic Pyrolysis of Bamboo in a Bubbling Fluidized-bed Reactor with Two Different Catalysts: HZSM-5 and Red Mud for Upgrading Bio-oil", Renew. Energy in press.
-
Wang, B., Wang, H., Liu, G., Li, X., and Wu, J., "Conversion of Dimethyl Ether to Toluene under an
$O_2$ Stream over W/HZSM-5 Catalysts", Catal. Sci. Technol., 5, 1813-1820 (2015). https://doi.org/10.1039/C4CY01445F -
Tirupanyam, B. V., Srinivas, C., Meena, S. S., Yusuf, S. M., Kumar, A. S., Sastry, D. L., and Seshubai, V., "Investigation of Structural and Magnetic Properties of Co-precipitated Mn-Ni Ferrite Nanoparticles in the Presence of
${\alpha}-Fe_2O_3$ phase", J. Magn. Magn. Mater, 392, 101-106 (2015). https://doi.org/10.1016/j.jmmm.2015.05.010 - Ebadi, M., Buskaran, K., Saifullah, B., Fakurazi, S., and Hussein, M. Z., "The Impact of Magnesium-Aluminum-Layered Double Hydroxide-Based Polyvinyl Alcohol Coated on Magnetite on the Preparation of Core-Shell Nanoparticles as a Drug Delivery Agent", Int. J. Mol. Sci., 20(15), 3764 (2019). https://doi.org/10.3390/ijms20153764
- Lorenzetti, C., Conti, R., Fabbri, D., and Yanik, J., "A Comparative Study on the Catalytic Effect of H-ZSM5 on Upgrading of Pyrolysis Vapors Derived from Lignocellulosic and Proteinaceous Biomass", Fuel, 166, 446-452 (2016). https://doi.org/10.1016/j.fuel.2015.10.051
- Channiwala, S. A., and Parikh, P. P., "A Unified Correlation for Estimating HHV of Solid, Liquid and Gaseous Fuels", Fuel, 81, 1051-1063 (2002). https://doi.org/10.1016/S0016-2361(01)00131-4
- Maisano, S., Urbani, F., Mondello, N., and Chiodo, V., "Catalytic Pyrolysis of Mediterranean Sea Plant for Bio-oil Production", Int. J. Hydrog. Energy, 42, 28082-28092 (2017). https://doi.org/10.1016/j.ijhydene.2017.07.124
- Idem, R. O., Katikaneni, S. P. R., and Bakhshi, N. N., "Thermal Cracking of Canola Oil: Reaction Products in the Presence and Absence of Steam", Energy Fuels, 10, 1150-1162 (1996). https://doi.org/10.1021/ef960029h
- Kantarelis, E., "Catalytic Steam Pyrolysis of Biomass for Production of Liquid Feedstock", KTH-Royal Institute of Technology 162. ISBN 978-91-7595-023-5 (2014).
- Liu, T.-L., Cao, J.-P., Zhao, X.-Y., Wang, J.-X., Ren, X.-Y., Fan, X., Zhao, Y.-P., and Wei, X.-Y., "In situ Upgrading of Shengli Lignite Pyrolysis Vapors over Metal-loaded HZSM-5 Catalyst", Fuel Process. Technol., 160, 19-26 (2017). https://doi.org/10.1016/j.fuproc.2017.02.012
- Lopez, A., Marco de, I., Caballero, B. M., Laresgoiti, M. F., Adrados, A., and Aranzabal, A., "Catalytic Pyrolysis of Plastic Wastes with two Different Types of Catalysts: ZSM-5 zeolite and Red Mud", Appl. Catal. B., 104, 211-219 (2011). https://doi.org/10.1016/j.apcatb.2011.03.030
- Sweygers, N., Somers, M. H., and Appels, L., "Optimization of Hydrothermal Conversion of Bamboo (Phyllostachys aureosulcata) to Levulinic Acid via Response Surface Methodology", J. Environ. Manage., 219, 95-102 (2018). https://doi.org/10.1016/j.jenvman.2018.04.105
- Wang, S., Xi, Z., Bai, X., Yi, W., and Fu, P., "Catalytic Pyrolysis of Lignin in a Cascade Dual-catalyst System of Modified Red Mud and HZSM-5 for Aromatic Hydrocarbon Production", Bioresour. Technol., 278, 66-72 (2019). https://doi.org/10.1016/j.biortech.2019.01.037