DOI QR코드

DOI QR Code

활성탄에 의한 Acid Red 66의 흡착에 대한 등온선, 동력학 및 열역학적 특성

Characteristics of Isotherm, Kinetic and Thermodynamic Parameters for the Adsorption of Acid Red 66 by Activated Carbon

  • 이종집 (공주대학교 화학공학부)
  • Lee, Jong-Jib (Department of Chemical Engineering, Kongju National University)
  • 투고 : 2019.01.09
  • 심사 : 2020.02.05
  • 발행 : 2020.03.31

초록

입상 활성탄에 대한 Acid Red 66의 흡착 등온선과 동력학적, 열역학적 파라미터에 대해 염료의 초기농도, 접촉시간, 온도를 흡착변수로 하여 조사하였다. 흡착평형자료는 Langmuir, Freundlich, Temkin, Redlich-Peterson 및 Temkin 등온흡착식에 적용하였다. Freundlich 등온흡착식이 가장 잘 맞았으며, 계산된 Freundlich 분리계수 값(1/n = 0.125 ~ 0.232)으로부터 입상 활성탄이 Acid Red 66을 효과적으로 처리할 수 있다는 것을 알 수 있었다. Temkin의 흡착열관련상수(BT = 2.147 ~ 2.562 J mol-1)는 이 공정이 물리흡착임을 나타냈다. 동력학적 실험으로부터 흡착공정은 유사 이차 반응속도식에 잘 맞았다. 입자 내 확산식에 대한 결과는 경계층 확산을 나타내는 첫 번째 직선의 기울기보다 입자내 확산을 나타내는 두 번째 직선의 기울기가 작게 나타나서 입자 내 확산이 율속단계인 것을 확인하였다. 열역학 실험으로부터 활성화 에너지는 35.23 kJ mol-1로 흡착공정이 물리흡착공임을 확인하였다. Gibbs 자유에너지 변화(ΔG = -0.548 ~ -7.802 kJ mol-1)와 엔탈피 변화(ΔH = +109.112 kJ mol-1)은 각각 흡착공정이 자발적 공정 및 흡열과정임을 나타내었다. 등량흡착열은 흡착된 염료분자들의 측면상호작용을 나타내는 표면부하량이 증가함에 따라 증가하였다.

The kinetic and thermodynamic parameters of Acid Red 66, adsorbed by granular activated carbon, were investigated on areas of initial concentration, contact time, and temperature. The adsorption equilibrium data were applied to Langmuir, Freundlich, Temkin, Redlich-Peterson, and Temkin isotherms. The agreement was found to be the highest in the Freundlich model. From the determined Freundlich separation factor (1/n = 0.125 ~ 0.232), the adsorption of Acid Red 66 by granular activated carbon could be employed as an effective treatment method. Temkin's constant related to adsorption heat (BT = 2.147 ~ 2.562 J mol-1) showed that this process was physical adsorption. From kinetic experiments, the adsorption process followed the pseudo-second order model with good agreement. The results of the intraparticle diffusion equation showed that the inclination of the second straight line representing the intraparticle diffusion was smaller than that of the first straight line representing the boundary layer diffusion. Therefore, it was confirmed that intraparticle diffusion was the rate-controlling step. From thermodynamic experiments, the activation energy was determined as 35.23 kJ mol-1, indicating that the adsorption of Acid Red 66 was physical adsorption. The negative Gibbs free energy change (ΔG = -0.548 ~ -7.802 kJ mol-1) and the positive enthalpy change (ΔH = +109.112 kJ mol-1) indicated the spontaneous and endothermic nature of the adsorption process, respectively. The isosteric heat of adsorption increased with the increase of surface loading, indicating lateral interactions between the adsorbed dye molecules.

키워드

참고문헌

  1. Aboua, K. N., Yobouet, Y. A., Benjamin, K., Gone, D. L., and Trokourey, A., "Investigation of Dye Adsorption onto Activated Carbon from the Shells of Macore Fruit," J. Environ. Manage., 156(1), 10-14 (2016).
  2. Koushaa, M., Daneshvara, E., Dopeikara, H., Taghavia, D., and Bhatnagrab, A., "Box-Behnken Design Optimization of Acid Black 1 Dye Biosorption by Different Brown Macroalgae," Chem. Eng. J., 179, 158-168 (2012). https://doi.org/10.1016/j.cej.2011.10.073
  3. Ferreira, G. M. D., Gabriel Max Dias Ferreira, G. M. D., Hespanhol, M. C., Rezende, J. P., Pires, A. C. S., Gurgel, L. V. A., and Silva, L. H. M., "Adsorption of Red Azo Dyes on Multi-Walled Carbon Nanotubes and Activated Carbon: A Thermodynamic Study," J. Coll. Surf. A, Physicochem. Eng. Aspec., 529, 531-540 (2017). https://doi.org/10.1016/j.colsurfa.2017.06.021
  4. Grag, V. K., Amita, M., and Gupta, R., "Basic Dye Removal from Simulated Wastewater by Adsorption Using Indian Rosewood Sawdust: a Timber Industry Waste," Dyes Pigm., 63, 243-250 (2004). https://doi.org/10.1016/j.dyepig.2004.03.005
  5. Shin, J., Suh, S. S., and Choi, M. K., "Enthalpy Changes of Adsorption of Tetrafluorocarbon ($CF_4$) and Hexafluoroethane ($C_2F_6$) on Activated Carbon," Clean. Technol., 20(1), 22-27 (2014). https://doi.org/10.7464/ksct.2014.20.1.022
  6. Lee J. J., "Study on Equilibrium, Kinetic and Thermodynamic for Adsorption of Coomassi Brilliant Blue G Using Activated Carbon," Clean. Technol., 20(3), 290-297 (2014). https://doi.org/10.7464/ksct.2014.20.3.290
  7. A., U. I., Abdulraheem, G., Bala, S., Muhammad, S., and Abdullahi, M., "Kinetics, Equilibrium and Thermodynamics Studies of C.I. Reactive Blue 19 Dye Adsorption on Coconut Shell Based Activated Carbon," Int. Biodeterior. Biodegrad., 102(11), 265-273 (2015). https://doi.org/10.1016/j.ibiod.2015.04.006
  8. Afshin, S., Mokhtari, S. A., Vosoughi, M., Sadeghi, H., and Rashtbari, Y., "Data of Adsorption of Basic Blue 41 Dye from Aqueous Solutions by Activated Carbon Prepared from Filamentous Algae," Data Brief., 21, 1008-1013 (2018). https://doi.org/10.1016/j.dib.2018.10.023
  9. Faur-Brasquet, C., Le Cloirec, P., and Metivier, H. P., "Adsorption of Dyes onto Activated Carbon Cloth : Approach of Adsorption Mechanisms and Coupling of ACC with Ultra Filtration to Treat Coloured Wastewaters," Sep. Purif. Technol., 31(1), 3-11 (2003). https://doi.org/10.1016/S1383-5866(02)00147-8
  10. Goswami, M., and Phukan, P., "Enhanced Adsorption of Cationic Ddyes Using Sulfonic Acid Modified Activated Carbon," J. Environ. Chem. Eng., 5(4), 3508-3517 (2017). https://doi.org/10.1016/j.jece.2017.07.016
  11. Kansal, S. K., Ali, A. H., and Kapoor, S., "Photocatalytic Decolorization of Biebrich Scarlet Dye in Aqueous Phase Using Different Nanophotocatalysts," Desalination, 259, 147-155 (2010). https://doi.org/10.1016/j.desal.2010.04.017
  12. Wikidipia, "Biebrich scarlet," (2019).
  13. National Institute of Food and Drug Safety Evaluation, "Anthraquinone," (2019).
  14. Lee, J. J., "Study on Adsorption Equilibrium, Kinetic and Thermodynamic Parameters of Murexide by Activated Carbon," Clean Technol., 20, 56-62 (2019).
  15. Lee, J. J., "Adsorption Kinetic, Thermodynamic Parameter and Isosteric Heat for Adsorption of Crystal Violet by Activated Carbon," Appl. Chem. Eng., 28(2), 206-213 (2017). https://doi.org/10.14478/ace.2016.1132
  16. Belbachir, I., and Makhoukhi, B., "Adsorption of Bezathren Dyes onto Sodic Bentonite from Aqueous Solutions," J. Taiwan Inst. Chem. Eng., 75, 105-111, (2017). https://doi.org/10.1016/j.jtice.2016.09.042
  17. Souza, T. N. V., Carvalho, S. M. L., Vieira, M. G. A., Silva, M. G. C., and Brasil, D. S. B., "Adsorption of Basic Dyes onto Activated Carbon: Experimental and Theoretical Investigation of Chemical Reactivity of Basic Dyes Using DFT-based Descriptors," Appl. Surf. Sci., 448, 662-670 (2018). https://doi.org/10.1016/j.apsusc.2018.04.087
  18. Kaur, S., Rani, S.Mahajan, R. K., Asif, M., and Gupta, V. K., "Synthesis and Adsorption Properties of Mesoporous Material for the Removal of Dye Safranin: Kinetics, Equilibrium, and Thermodynamics, J. Ind. Eng. Chem., 22, 19-27 (2015). https://doi.org/10.1016/j.jiec.2014.06.019
  19. Sivakumar, P., and Palanisamy, P. N., "Adsorption Studies of Basic Red 29 by a Non Conventional Activated Carbon Prepared from Euphorbia Antiquorum L.," Intl. J. Chem. Technol. Res., 1, 502-510 (2009).
  20. Ghasemi, M., Naushad, M., Ghasemi, N., and Khosravifard, Y., "Adsorption of Pb(II) from Aqueous Solution Using New Adsorbents Prepared from Agricultural Waste: Adsorption Isotherm and Kinetic Studies," J. Ind. Eng. Chem., 20, 2193-2199 (2014). https://doi.org/10.1016/j.jiec.2013.09.050
  21. Grecal, O., Ozcan, A., Ozcanan, A. S., and Grecel, H. F., "Preparation of Activated Carbon from a Renewable Bio-plant of Euphorbia Rigidia by $H_2SO_4$ Activation and Its Adsorption Behavior in Aqueous Solutions," Appl. Surf. Sci., 253, 4843-4852 (2007). https://doi.org/10.1016/j.apsusc.2006.10.053
  22. Lee, E. H., Lee, K. Y., Kim, K. W., Kim, H. J., Kim, I. S., Chung, D. Y., Moon, J. K., and Choi, J. W., "Removal of I by Adsorption with AgX (Ag-impregnated X Zeolite) from High-Radioactive Seawater Waste," J. Nucl. Fuel Cycle Waste Technol., 14(3), 223-234 (2016). https://doi.org/10.7733/jnfcwt.2016.14.3.223
  23. Onal, Y., Basar, C. A., Eren, D., Onalzdemir, C. S., and Depci,T., "Adsorption Kinetics of Mlachite Green onto Activated Carbon Prepared from Tuncbilek," J. Hazard. Mater., B128, 150-157 (2006).
  24. Gopinathan, R., Bhowal, A., and Garlapati, C., "Thermodynamic Study of Some Basic Dyes Adsorption from Aqueous Solutions on Activated Carbon and New Correlations," J. Chem. Thermodyn., 107, 182-188 (2017). https://doi.org/10.1016/j.jct.2016.12.031
  25. Pan, M., Lin, X., Vie, J., and Huang, X., "Kinetic, Equilibrium and Thermodynamic Studies for Phosphate Adsorption on Aluminum Hydroxide Modified Palygorskite Nano-Composites," Royal Soc. Chem., 7, 4492-4500 (2017).
  26. Sulak, M. T., Demirbas, E., and Kobya, M., "Removal of Astrazon Yellow 7GL from Aqueous Solutions by Adsorption onto Wheat Bran," Biores. Technol., 98, 2590-2598 (2007). https://doi.org/10.1016/j.biortech.2006.09.010
  27. Anirudhan, T. S., and Radhakrishnan, P. G., "Thermodynamics and Kinetics of Adsorption of Cu(II) from Aqueous Solutions onto a New Cation Exchanger Derived from Tamarind Fruit Shell," J. Chem. Thermodyn., 40, 702-709 (2008). https://doi.org/10.1016/j.jct.2007.10.005
  28. Ahsaine, H. A., Zbair, M., Anfar, Z., Nacir, Y., El haouti, R., El Alem, N., and Ezahri, M., "Cationic Dyes Adsorption onto High Surface Area 'Almond Shell' Activated Carbon: Kinetics, Equilibrium Isotherms and Surface Statistical Modeling," Mater. Today Chem., 8, 121-132 (2018). https://doi.org/10.1016/j.mtchem.2018.03.004