DOI QR코드

DOI QR Code

Inundation Analysis on the Flood Plain in Ungauged Area Using Satellite Rainfall and Global Geographic Data: In the case of Tumen/Namyang Area in Duman-gang(Riv.)

위성강우와 글로벌 지형 자료를 이용한 미계측 지역 홍수터 침수모의 : 두만강 도문/남양 지역을 중심으로

  • CHOI, Yun-Seok (Department of Land, Water and Environment Research, Korea Institute of Civil Engineering and Building Technology) ;
  • KIM, Joo-Hun (Department of Land, Water and Environment Research, Korea Institute of Civil Engineering and Building Technology) ;
  • KIM, Ji-Sung (Department of Land, Water and Environment Research, Korea Institute of Civil Engineering and Building Technology)
  • 최윤석 (한국건설기술연구원 국토보전연구본부) ;
  • 김주훈 (한국건설기술연구원 국토보전연구본부) ;
  • 김지성 (한국건설기술연구원 국토보전연구본부)
  • Received : 2020.02.24
  • Accepted : 2020.03.24
  • Published : 2020.03.31

Abstract

The purpose of this study is to present a method for quantitative analysis of flooding at the flood plain in an ungauged area using satellite rainfall and global geographic data. For this, flooding of the Tumen/Namyang area in the Duman-gang(Riv.) was simulated and the flood conditions were quantitatively analyzed. The IMERG data, a rainfall data derived from satellite images, was used as rainfall data. The GRM model was applied to the watershed runoff simulation, and the G2D model was applied to the flooding simulation of the Tumen/Namyang area. Flood event caused by Typhoon Lionrock in August 2016 was applied. Recorded peak discharge of the Tumen/Namyang region was used to verify the runoff simulation results. To verify the result of the inundation simulation, the flood situation collected through field survey and satellite image data before and after the flood were used. The peak flow rates by the runoff simulation and flood record were 7,639㎥/s and 7,630㎥/s, respectively, with a relative error of about 0.1%. In the flood simulation, the results were similar to the flooding ranges identified in the survey data and satellite images. And the changes of flooding depth and flooding time in the flood plain in Tumen/Namyang area could also be assessed. The methods and results of this study will be useful for the quantitative assessment of floods in the ungauged areas.

본 연구의 목적은 위성강우와 글로벌 지형자료를 이용하여 미계측 지역에 있는 홍수터에서의 홍수를 정량적으로 분석하기 위한 방법을 제시하는 것이다. 이를 위해서 두만강의 도문/남양 지역 홍수터에 대한 범람을 모의하고 대상 지역의 침수 상황을 정량적으로 분석하였다. 강우는 위성영상으로부터 유도된 강우 자료인 IMERG 자료를 이용하였다. 유출모의는 GRM 모델을 적용하였으며, 도문/남양 지역의 범람해석은 G2D 모델을 이용하였다. 홍수사상은 2016년 8월 태풍 라이언록으로 인해 발생된 홍수를 대상으로 하였다. 유출모의 결과의 검증은 도문/남양 지역의 첨두유량 기록을 사용하였으며, 범람해석 결과의 검증은 현지답사를 통해 수집된 홍수상황과 홍수 전후의 위성영상 자료를 이용하였다. 연구결과 유출모의 첨두유량은 7,639㎥/s로 기록된 첨두유량 7,630㎥/s와 약 0.1%의 상대오차를 나타내었다. 범람모의에서는 홍수발생 당시에 대한 상황 조사 자료 및 위성영상에서 확인된 침수 범위와 유사한 결과를 얻을 수 있었다. 또한 도문/남양 지역의 홍수터에서 침수심의 변화와 침수시간을 평가할 수 있었다. 본 연구에서 적용한 방법과 연구결과는 향후 미계측 지역에서의 홍수를 정량적으로 평가할 때 유용하게 활용될 수 있을 것이다.

Keywords

References

  1. Bajracharya, S.R., M.S. Shrestha, and A.B. Shrestha. 2014. Assessment of Highresolution Satellite Rainfall Estimation Products in a Streamflow Model for Flood Prediction in the Bagmati basin, Nepal. Journal of Flood Risk Managememt. 10(1).
  2. Choi, Y.S. and K.T. Kim. 2019. Grid based 2-dimensional Land Surface Flood Model User's Manual. Korea Institute of Civil Engineering and Building Technology. p.1-9.
  3. Choi, Y.S. and K.T. Kim. 2020. Grid based Rainfall-runoff Model User's Manual. Korea Institute of Civil Engineering and Building Technology. p.1-28.
  4. Chow, V.T. 1959. Open-channel Hydraulics. International student edition, McGraw-Hill, Kogakusha. p.101-123.
  5. Dandridge, C., V. Lakshmi, J. Bolten and R. Srinivasan. 2019. Evaluation of Satellitebased Rainfall Estimates in the Lower Mekong River Basin(Southeast Asia). Remote Sensing. 11:2709. https://doi.org/10.3390/rs11222709
  6. Dembele, M. and S.J. Zwart. 2016. Evaluation and Comparison of Satellite-based Rainfall Products in Burkina Faso, West Africa. International Journal of Remote Sensing. 37(17):3995-4014. https://doi.org/10.1080/01431161.2016.1207258
  7. FAO, IIASA, ISRIC, ISS-CAS and JRC. 2012. Harmonized World Soil Database (version 1.2). FAO, Rome, Italy and IIASA, Laxenburg, Austria. p.1-6.
  8. Ghanbarpour, M.R. S. Salimi, M.M. Saravi and M. Zarei. 2011. Calibration of River Hydraulic Model Combined with GIS Analysis using Ground-based Observation Data. Research Journal of Applied Sciences, Engineering and Technology. 3(5):456-463.
  9. Gleyzes, M.A. L. Perret and P. Kubik. 2012. PLEIADES System Architecture and Main Performances. International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, XXXIX(B1), XXII ISPRS Congress, 25 August, Melbourne, Australia. p.537-542.
  10. Harris, A., S. Rahman, F. Hossain, L. Yarborough, A.C. Bagtzoglou and G. Easson. 2007. Satellite-based Flood Modeling Using TRMM-based Rainfall Products. Sensors. 7:3416-3427. https://doi.org/10.3390/s7123416
  11. Hong Y., Y. Zhang and S. Khan. 2016. Hydrologic Remote Sensing: Capacity Building for Sustainability and Resilience. CRC Press.
  12. Hong Y, G. Tang, Y. Ma, Q. Huang, Z. Han, Z. Zeng, Y. Yang, C. Wang and X. Guo. 2019. Remote Sensing Precipitation: Sensors, Retrievals, Validations, and Applications. In: Li X., Vereecken H. (eds) Observation and Measurement of Ecohydrological Processes. Ecohydrology, vol.2. Springer, Berlin, Heidelberg. p.107-128.
  13. Hoscilo, A., H. Balzter, E. Bartholomé, M. Boschetti, P.A. Brivio, A, Brink, M. Clericic and J.F. Pekelc., 2015. A Conceptual Model for Assessing Rainfall and Vegetation Trends in Sub-Saharan Africa from Satellite Data. International Journal of Climatology. 35:3582-3592. https://doi.org/10.1002/joc.4231
  14. Jarvis A., H.I. Reuter, A. Nelson and E. Guevara. 2008. Hole-filled Seamless SRTM Data V4. International Centre for Tropical Agriculture (CIAT). http://srtm.csi.cgiar.org.(Accessed 04 February 2020).
  15. Jung, Y. and V. Merwade. 2012. Uncertainty Quantification in Flood Inundation Mapping using Generalized Likelihood Uncertainty Estimate and Sensitivity Analysis. Journal of Hydrologic Engineering. 17(4):507-520. https://doi.org/10.1061/(ASCE)HE.1943-5584.0000476
  16. Kim, J.H., Y.S. Choi and K.T. Kim. 2015. Flow Estimation Using Rainfalls Derived from Multiple Satellite Images in North Korea. Journal of the Korean Association of Geographic Information Studies. 18(4):31-42 https://doi.org/10.11108/kagis.2015.18.4.031
  17. Kim, J.H., K.T. Kim and Y.S. Choi. 2017. FRunoff Estimation Using Rainfalls Derived from Multi-Satellite Images. Journal of the Korean Association of Geographic Information Studies. 17(1):107-118 https://doi.org/10.11108/kagis.2014.17.1.107
  18. Kim, I.W., J. Oh, S. Woo and R.H. Kripalani. 2019. Evaluation of Precipitation Extremes over the Asian Domain: observation and modelling studies. Climate Dynamics. 52:1317-1342. https://doi.org/10.1007/s00382-018-4193-4
  19. Korea Meteorological Administration, 2017. Typhoon Analysis Report 2016. p.198
  20. Maggioni, V. and C. Massari. 2018. On the Performance of Satellite Precipitation Products in Riverine Flood Modeling: A Review. Journal of Hydrology. 558:214-224. https://doi.org/10.1016/j.jhydrol.2018.01.039
  21. NPR. 2016. https://www.npr.org/sections/thetwo-way/2016/09/14/493912206/devastating-typhoon-leaves-some-140-000-north-koreans-in-need-of-aid (Accessed 13 December 2019).
  22. Namuwiki. 2019. https://namu.wiki/w/2016%EB%85%84%20%EB%91%90%EB%A7%8C%EA%B0%95%20%EC%9C%A0%EC%97%AD%20%EB%8C%80%ED%99%8D%EC%88%98?from=%EB%B6%81%ED%95%9C%20%ED%99%8D%EC%88%98 (Accessed 30 January 2020).
  23. Pakoksung, K. and M. Takagi. 2016. Effect of Satellite based Rainfall Products on River Basin Responses of Runoff Simulation on Flood Event. Modelling Earth System Environment. 2:143. https://doi.org/10.1007/s40808-016-0200-0
  24. Pappenberger, F., K. Beven, M. Horritt and S. Blazkova. 2005. Uncertainty in the Calibration of Effective Roughness Parameters in HEC-RAS using Inundation and Downstream Level Observations. Journal of Hydrology 302(1-4):46-69. https://doi.org/10.1016/j.jhydrol.2004.06.036
  25. Pasquale M., P. Claudio and V. Andrea. 2013. Using WORLDVIEW-2 Satellite Imagery to Support Geoscience Studies on Phlegraean Area. American Journal of Geosciences. 3(1):1-12. https://doi.org/10.3390/geosciences3010001
  26. Shuhei, Y. and A. Giriraj. 2017. Applications of Satellite-based Rainfall Estimates in Flood Inundation Modeling: a Case Study in Mundeni Aru River Basin, Sri Lanka. Remote Sensing 9(10):1-16.
  27. Sohn, B.J., H.J. Han and E.K. Seo. 2010. Validation of Satellite-based Highresolution Rainfall Products over the Korean Peninsula using Data from a Dense Rain Gauge Network. Journal of Applied Meteorology and Climatology. 49(4):701-714. https://doi.org/10.1175/2009JAMC2266.1
  28. Tam, T.H., M.Z.A. Rahman, S. Harun, M.N. Hanapi and I.U. Kaoje. 2019. Application of Satellite Rainfall Products for Flood Inundation Modelling in Kelantan River Basin, Malaysia. Hydrology. 6:95. https://doi.org/10.3390/hydrology6040095
  29. Tateishi, R., N.T. Hoan, T. Kobayashi, B. Alsaaideh, G. Tana1 and D.X. Phong. 2014. Production of Global Land Cover Data-GLCNMO2008. Journal of Geography and Geology. 6(3):99-122.
  30. VOA. 2016. https://www.voanews.com/eastasia/133-killed-north-korea-flooding (Accessed 10 January 2020).
  31. Wang, J., H. Yang, L. Li, J.J. Gourley, I.K. Sadiq, K.K. Yilmaz, R.F. Adler, F.S. Policelli, S. Habib, D. Irwn, A.S. Limaye, T. Korme and L. Okello. 2011. The Coupled Routing and Excess Storage (CREST) Distributed Hydrological Model. Hydrological Science Journal. 56(1):84-98. https://doi.org/10.1080/02626667.2010.543087
  32. Xie, P., S.H. Yoo, R. Joyce and Y. Yarosh. 2011. Bias-corrected CMORPH: a 13-year Analysis of High-resolution Global Precipitation. NOAA's Climate Prediction Center(presentation). Available at: http://ftp.cpc.ncep.noaa.gov/precip/CMORPH_V1.0/REF/EGU_1104_Xie_bias -CMORPH.pdf. (Accessed 03 May 2016).
  33. Yoshimoto, S. and G. Giriraj. 2017. Applications of Satellite-based Rainfall Estimates in Flood Inundation Modeling: a Case Study in Mundeni Aru River Basin, Sri Lanka. Remote Sensing. 9(10):1-16.
  34. Yuan, F., L. Zhang, K. Soe and Y. Liu. 2019. Applications of TRMM- and GPM-Era Multiple-satellite Precipitation Products for Flood Simulations at Sub-daily Scales in a Sparsely Gauged Watershed in Myanmar. Remote Sensing. 11(2):140. https://doi.org/10.3390/rs11020140