DOI QR코드

DOI QR Code

Generation of High Quality Geospatial Information Using Computer Vision Analysis of Line Type Digital Aerial Photogrammetry Camera Imagery

Line Type 디지털 항공사진측량 카메라 영상의 컴퓨터비전 해석을 통한 고품질 공간정보 생성

  • 이현직 (상지대학교 스마트건설공학과)
  • Received : 2020.02.19
  • Accepted : 2020.03.10
  • Published : 2020.03.31

Abstract

The National Geographic Information Institute of Korea takes digital aerial photograph images every two years to make and modify/renew the digital map. The cameras for aerial photogrammetry to capture these digital aerial photographs are divided into frame types and line types. Computer vision analysis of aerial photograph images was only possible for frame type. Thus, in this study, Line type aerial photograph images was intended to generate geospatial information through computer vision analysis, and forest geospatial information was created as a method for the utilization of aerial picture images. As a result, geospatial information generated by computer vision analysis of line type aerial photograph images showed that RMSE of horizontal and vertical position errors was less than quadruple that of GSD. Forest geospatial information was generated using geospatial information generated by computer vision analysis. It was confirmed that extraction of the crown of tree and calculation of tree height are possible. Through this study, it is expected that utilization of aerial photograph images will be improved.

우리나라의 국토지리정보원에서는 2년 주기로 정사영상 제작과 수치지도 수정/갱신 등을 위해 디지털 항공사진영상을 촬영하고 있다. 이러한 디지털 항공사진영상을 촬영하기 위한 항공사진측량용 카메라는 면형(Frame type) 및 선형(Line type)으로 구분된다. 항공사진영상의 컴퓨터비전 해석은 Frame type만 가능하였다. 이에 본 연구에서는 Line type 항공사진영상을 컴퓨터비전 해석으로 공간정보를 생성하고자 하였으며, 항공사진영상의 활용 방안으로 산림공간정보를 생성하고자 하였다. 그 결과 Line type 항공사진영상의 컴퓨터비전 해석으로 생성된 공간정보는 수평위치 및 수직위치 오차의 RMSE가 GSD의 4배 이내로 나타났다. 컴퓨터비전 해석으로 생성된 공간정보를 이용해 산림공간정보를 생성하였으며, 이를 이용해 수관형상의 추출, 수고의 산정이 가능함을 확인하였다. 본 연구를 통하여 항공사진영상 활용성을 제고할 수 있을 것으로 기대된다.

Keywords

References

  1. Bang, D.S., Lee, D.G., Yang, S.R. and Lee, H.J., 2018, Study on the tree height using unmanned aerial photogrammetry method, Journal of the Korean Association of Geographic Information Studies 21(3):35-47 https://doi.org/10.11108/KAGIS.2018.21.3.035
  2. Kim, E.M., 2013, Extraction of the tree regions in forest areas using LiDAR data and ortho-image, Journal of the Korean Society for Geospatial Information system 21(2):27-34 https://doi.org/10.7319/KOGSIS.2013.21.2.027
  3. Kim, E.M., Choi, H.S. and Park, J.H., 2017a, Analysis of applicability of orthophoto using 3D mesh on aerial image with large file size, Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography 35(3):155-166 https://doi.org/10.7848/ksgpc.2017.35.3.155
  4. Kim, K.D., Lee, D.G., Yu, Y.G. and Lee, H.J., 2017b, Processing of aerial photographic image using unmanned aerial photogrammetry process and revision/update method of digital map of small change area, Journal of the Korean Society for Geospatial Information Science 25(4):15-24 https://doi.org/10.7319/kogsis.2017.25.4.015
  5. Lee, D.G., Kim, K.D., Yang, S.R. and Lee, H.J., 2017, Study on the possibility of forest geospatial information generation using past panchromatic forest aerial photograph scanning database, Journal of the Korean Society for Geospaital Information Science 24(4):107-116
  6. Lim, S.B., Seo, C.W. and Yun, H.C., 2015, Digital map updates with UAV Photogrammetric methods, Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography, 33(5):397-405. https://doi.org/10.7848/ksgpc.2015.33.5.397
  7. Marcis, M., Bartak, P., Valaska, D., Frastia, M. and Trhan, O., 2016, Use of images based modelling for documentation of intricately shaped object, The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Vol. XLI-B5, pp.327-334. https://doi.org/10.5194/isprsarchives-XLI-B5-327-2016
  8. Pascual, C., Gracia-Abril, A., Grcia-Montero, L.G., Martin-Fernandez, S. and Cohen, W.B., 2008, Object-based semi-automatic approach for forest structure aharacterization using lidar data in heterogeneous Pinus sylvestris stands, Forest Ecology and Management, 255(11):3677-3685. https://doi.org/10.1016/j.foreco.2008.02.055
  9. Zimble, D.A., Evans, D.L., Carlson, G.C., Parker, R.C., Grado, S.C. and Gerard, P.D., 2003, Characterizing vertical forest structure using small-footprint airborne LiDAR. Remote Sensing of Environment. 87(2-3):171-182. https://doi.org/10.1016/S0034-4257(03)00139-1