페닐케톤뇨증의 치료: 현재와 미래

Phenylketonuria: Current Treatments and Future Developments

  • 이정호 (순천향대학교 부속 서울병원 소아청소년과)
  • Lee, Jeongho (Department of Pediatrics, Soonchunhyang University Hospital)
  • 발행 : 2020.12.31

초록

페닐케톤뇨증(PKU)은 전세계적으로 가장 잘 알려지고 중요한 유전성 대사질환이다. 1950년대 이후 단백제한을 이용한 식사치료를 처음으로 시도하여 성과가 있었던 질환이며 1960년대 이후 신생아선별검사를 통해 조기진단과 조기치료가 가능하게 된 최초의 유전성대사질환이기 때문이다. 단백제한 식사치료의 효과가 좋지만 학동기, 사춘기 이후 성인시기까지 유지하는 것의 어려움이 있고 이시기에 조절이 잘 되지 않았을 경우 경련, 여러가지 정신과적인 문제들, 삶의 질의 감소 등이 문제가 되어서 오랜 기간 치료를 위한 여러 방법들이 제시되었다. 더해서 2014년 미국의학유전학회(American Medical College of Medical Genetics and Genomics, ACMG)에서 전 연령에서 혈중 페닐알라닌 수치를 120-360 umol/L로 제시를 한 이후 더욱 치료의 중요성이 올라갔다. 2000년대 페닐알라닌수산화 효소(phenylalanine hydroxylase, PAH)의 조효소인 tetrahydrobiopterin (BH4)가 치료 승인되어서 약물반응을 보이는 환자에서 치료가 시작되었으며 4세미만에서도 허가가 되어서 이른 시기부터 약물치료를 병행하여 효과를 보게 되었다. 높은 혈중 페닐알라닌수치가 혈액-뇌 장벽(Blood-brain barrier, BBB)을 통하여 뇌로 넘어가서 회백질의 변성을 나타내게 되는 문제를 막기 위해 거대중성아미노산(LNAA)를 이용한 치료가 시도되고 있다. 오랫동안 연구되었던 페닐알라닌을 trans-cinnamic acid와 암모니아로 변화를 시키는 phenylalanine ammonialyase (PAL)을 이용한 효소치료는 최근 약제로 개발되어서 2018년 이후 성인환자를 대상으로 치료가 시작되었고 잘 조절되지 않는 환자들에게 효과를 보이고 있다. PAL을 경구용으로 개발하는 것이 빠르게 진행 중이며 유전자치료에 대한 연구들도 활발하게 진행이 되고 있어 다양한 치료들이 앞으로 기대된다.

Phenylketonuria is the most prevalent disorder caused by an inborn error in aminoacid metabolism. It results from mutations in the phenylalanine hydroxylase (PAH) gene. If untreated or late treated, results in profound and irreversible mental disability. Newborn screening test identify patients with phenylketouria. The early initiation of a phenylalanine restricted diet very soon prevents most of the neuropsychiatric complications. However, the diet therapy is difficult to maintain and compliance is poor, especially in adolescents and adulthood. Since 2015, American Medical College of Medical Genetics and Genomics (ACMG) recommended more strong restrictive diet therapy for target blood level of phenylalanine (<360 umol/L). For over four decades the only treatment was a very restrictive low phenylalanine diet. This changed in 2007 with the approval of cofactor therapy (Tetrahydrobiopterin, BH4) which is effective in up to 30% of patients. Data from controlled clinical trials with sapropterin dihydrochloride indicate a similar occurrence of all-cause adverse events with this treatment and placebo. Large neutral aminoacids (LNAA) competes with phenylalanine for transport across the blood-brain-barrier and have a beneficial effect on executive functioning. A new therapy has just been approved that can be effective in most patients with PAH deficiency regardless of their degree of enzyme deficiency or the severity of their phenotype. Phenylalanine ammonia lyase (PAL-PEG) was approved in the USA by FDA in May of 2018 for adult patients with uncontrolled blood phenylalanine concentrations on current treatment. Nucleic acid therapy (therapeutic mRNA or gene therapy) is likely to provide longer term solutions with few side effects.

키워드

참고문헌

  1. Bickel H, Gerrard J, Hickmans EM. Influence of phenylalanine intake on phenylketonuria. Lancet (London, England) 1953;265:812-3. https://doi.org/10.1016/S0140-6736(53)90473-5
  2. Lowe TB, DeLuca J, Arnold GL. Similarities and differences in key diagnosis, treatment, and management approaches for PAH deficiency in the United States and Europe. Orphanet J Rare Dis 2020;15:266. https://doi.org/10.1186/s13023-020-01541-2
  3. Lee YW, Lee DH, Kim ND, Lee ST, Ahn JY, Choi TY, et al. Mutation analysis of PAH gene and characterization of a recurrent deletion mutation in Korean patients with phenylketonuria. Exp Mol Med 2008;40:533-40. https://doi.org/10.3858/emm.2008.40.5.533
  4. Lee DH, Koo SK, Lee KS, Yeon YJ, Oh HJ, Kim SW, et al. The molecular basis of phenylketonuria in Koreans. Journal of Human Genetics 2004;49:617-21. https://doi.org/10.1007/s10038-004-0197-5
  5. Vockley J, Andersson HC, Antshel KM, Braverman NE, Burton BK, Frazier DM, et al. Phenylalanine hydroxylase deficiency: diagnosis and management guideline. Genet Med 2014;16:188-200. https://doi.org/10.1038/gim.2013.157
  6. National Institutes of Health (NIH) to host a consensus development conference on screening and management for phenylketonuria (PKU). Pediatr Nurs 2000;26:539.
  7. Feillet F, Chery C, Namour F, Kimmoun A, Favre E, Lorentz E, et al. Evaluation of neonatal BH4 loading test in neonates screened for hyperphenylalaninemia. Early Hum Dev 2008;84:561-7. https://doi.org/10.1016/j.earlhumdev.2008.01.003
  8. Blau N, van Spronsen FJ, Levy HL. Phenylketonuria. Lancet (London, England) 2010;376:1417-27. https://doi.org/10.1016/S0140-6736(10)60961-0
  9. Harding CO, Blau N. Advances and challenges in phenylketonuria. J Inherit Metab Dis 2010;33:645-8. https://doi.org/10.1007/s10545-010-9247-7
  10. Porta F, Spada M, Ponzone A. Early Screening for Tetrahydrobiopterin Responsiveness in Phenylketonuria. Pediatrics 2017;140.
  11. Anastasoaie V, Kurzius L, Forbes P, Waisbren S. Stability of blood phenylalanine levels and IQ in children with phenylketonuria. Mol Genet Metab 2008;95:17-20. https://doi.org/10.1016/j.ymgme.2008.06.014
  12. van Spronsen FJ, Ahring KK, Gizewska M. PKU-what is daily practice in various centres in Europe? Data from a questionnaire by the scientific advisory committee of the European Society of Phenylketonuria and Allied Disorders. J Inherit Metab Dis 2009;32:58-64. https://doi.org/10.1007/s10545-008-0966-y
  13. Grisch-Chan HM, Schwank G, Harding CO, Thony B. State-of-the-Art 2019 on Gene Therapy for Phenylketonuria. Hum Gene Ther 2019;30:1274-83. https://doi.org/10.1089/hum.2019.111
  14. Hydery T, Coppenrath VA. A Comprehensive Review of Pegvaliase, an Enzyme Substitution Therapy for the Treatment of Phenylketonuria. Drug Target Insights 2019;13:1177392819857089.
  15. Medford E, Hare DJ, Wittkowski A. Demographic and Psychosocial Influences on Treatment Adherence for Children and Adolescents with PKU: A Systematic Review. JIMD reports. 2018;39:107-16. https://doi.org/10.1007/8904_2017_52
  16. Morawska A, Mitchell AE, Etel E, Kirby G, McGill J, Coman D, et al. Psychosocial functioning in children with phenylketonuria: Relationships between quality of life and parenting indicators. Child Care Health Dev 2020;46:56-65. https://doi.org/10.1111/cch.12727
  17. Gregory CO, Yu C, Singh RH. Blood phenylalanine monitoring for dietary compliance among patients with phenylketonuria: comparison of methods. Genet Med 2007;9:761-5. https://doi.org/10.1097/gim.0b013e318159a355
  18. Shintaku H, Ohwada M, Aoki K, Kitagawa T, Yamano T. Diagnosis of tetrahydrobiopterin (BH4) responsive mild phenylketonuria in Japan over the past 10 years. Annals of the Academy of Medicine, Singapore 2008;37(12 Suppl):77-2.
  19. Camp KM, Parisi MA, Acosta PB, Berry GT, Bilder DA, Blau N, et al. Phenylketonuria Scientific Review Conference: state of the science and future research needs. Mol Genet Metab 2014;112:87-122. https://doi.org/10.1016/j.ymgme.2014.02.013
  20. Lichter-Konecki U, Vockley J. Phenylketonuria: Current Treatments and Future Developments. Drugs 2019; 79:495-500. https://doi.org/10.1007/s40265-019-01079-z
  21. Trefz FK, Burton BK, Longo N, Casanova MM, Gruskin DJ, Dorenbaum A, et al. Efficacy of sapropterin dihydrochloride in increasing phenylalanine tolerance in children with phenylketonuria: a phase III, randomized, double-blind, placebo-controlled study. J Pediatr 2009;154:700-7. https://doi.org/10.1016/j.jpeds.2008.11.040
  22. Bueno MA, Gonzalez-Lamuno D, Delgado-Pecellin C, Aldamiz-Echevarria L, Perez B, Desviat LR, et al. Molecular epidemiology and genotype-phenotype correlation in phenylketonuria patients from South Spain. Journal of Human Genetics 2013;58:279-84. https://doi.org/10.1038/jhg.2013.16
  23. Aldamiz-Echevarria L, Llarena M, Bueno MA, Dalmau J, Vitoria I, Fernandez-Marmiesse A, et al. Molecular epidemiology, genotype-phenotype correlation and BH4 responsiveness in Spanish patients with phenylketonuria. Journal of Human Genetics 2016;61:731-44. https://doi.org/10.1038/jhg.2016.38
  24. Levy H, Burton B, Cederbaum S, Scriver C. Recommendations for evaluation of responsiveness to tetrahydrobiopterin (BH(4)) in phenylketonuria and its use in treatment. Mol Genet Metab 2007;92:287-91. https://doi.org/10.1016/j.ymgme.2007.09.017
  25. Trefz F, Lichtenberger O, Blau N, Muntau AC, Feillet F, Belanger-Quintana A, et al. Tetrahydrobiopterin (BH4) responsiveness in neonates with hyperphenylalaninemia: a semi-mechanistically-based, nonlinear mixed-effect modeling. Mol Genet Metab 2015;114:564-9. https://doi.org/10.1016/j.ymgme.2015.01.013
  26. Eshraghi P, Noroozi Asl S, Bagheri S, Chalak V. Response to sapropterin hydrochloride (Kuvan®) in children with phenylketonuria (PKU): a clinical trial. Journal of pediatric endocrinology & metabolism : JPEM 2019;32:885-8. https://doi.org/10.1515/jpem-2018-0503
  27. Polak E, Ficek A, Radvanszky J, Soltysova A, Urge O, Cmelova E, et al. Phenylalanine hydroxylase deficiency in the Slovak population: genotype-phenotype correlations and genotype-based predictions of BH4-responsiveness. Gene 2013;526:347-55. https://doi.org/10.1016/j.gene.2013.05.057
  28. Evers RAF, van Vliet D, van Spronsen FJ. Tetrahydrobiopterin treatment in phenylketonuria: A repurposing approach. J Inherit Metab Dis 2020;43:189-99. https://doi.org/10.1002/jimd.12151
  29. Surtees R, Blau N. The neurochemistry of phenylketonuria. European Journal of Pediatrics 2000;159 Suppl 2:S109-13. https://doi.org/10.1007/PL00014370
  30. van Spronsen FJ, de Groot MJ, Hoeksma M, Reijngoud DJ, van Rijn M. Large neutral amino acids in the treatment of PKU: from theory to practice. J Inherit Metab Dis 2010;33:671-6. https://doi.org/10.1007/s10545-010-9216-1
  31. Burlina AP, Cazzorla C, Massa P, Polo G, Loro C, Gueraldi D, et al. Large Neutral Amino Acid Therapy Increases Tyrosine Levels in Adult Patients with Phenylketonuria: A Long-Term Study. Nutrients 2019;11.
  32. Hoskins JA, Jack G, Wade HE, Peiris RJ, Wright EC, Starr DJ, et al. Enzymatic control of phenylalanine intake in phenylketonuria. Lancet (London, England) 1980;1:392-4.
  33. Sarkissian CN, Shao Z, Blain F, Peevers R, Su H, Heft R, et al. A different approach to treatment of phenylketonuria: phenylalanine degradation with recombinant phenylalanine ammonia lyase. Proceedings of the National Academy of Sciences of the United States of America 1999;96(5):2339-44. https://doi.org/10.1073/pnas.96.5.2339
  34. Thomas J, Levy H, Amato S, Vockley J, Zori R, Dimmock D, et al. Pegvaliase for the treatment of phenylketonuria: Results of a long-term phase 3 clinical trial program (PRISM). Mol Genet Metab 2018;124:27-38. https://doi.org/10.1016/j.ymgme.2018.03.006
  35. Longo N, Dimmock D, Levy H, Viau K, Bausell H, Bilder DA, et al. Evidence- and consensus-based recommendations for the use of pegvaliase in adults with phenylketonuria. Genet Med 2019;21:1851-67. https://doi.org/10.1038/s41436-018-0403-z
  36. Sarkissian CN, Gamez A, Wang L, Charbonneau M, Fitzpatrick P, Lemontt JF, et al. Preclinical evaluation of multiple species of PEGylated recombinant phenylalanine ammonia lyase for the treatment of phenylketonuria. Proceedings of the National Academy of Sciences of the United States of America 2008;105:20894-9. https://doi.org/10.1073/pnas.0808421105
  37. Markham A. Pegvaliase: First Global Approval. Bio-Drugs 2018;32:391-5.
  38. Pereira de Sousa I, Gourmel C, Berkovska O, Burger M, Leroux JC. A microparticulate based formulation to protect therapeutic enzymes from proteolytic digestion: phenylalanine ammonia lyase as case study. Sci Rep 2020;10:3651. https://doi.org/10.1038/s41598-020-60463-y