DOI QR코드

DOI QR Code

녹나무과 상록활엽수 자생지 기후특성과 기후변화에 따른 분포 변화

Habitat Climate Characteristics of Lauraceae Evergreen Broad-leaved Trees and Distribution Change according to Climate Change

  • 유승봉 (국립수목원 DMZ자생식물연구과) ;
  • 김병도 (대구수목원 교육연구팀) ;
  • 신현탁 (국립수목원 DMZ자생식물연구과) ;
  • 김상준 (국립수목원 DMZ자생식물연구과)
  • 투고 : 2020.09.23
  • 심사 : 2020.11.18
  • 발행 : 2020.12.31

초록

기후변화는 생물계절반응 변화와 식물 자생지 이동을 초래한다. 우리나라 상록활엽수림도 과거 20년에 비해 분포역이 넓어지고 있으며, 자생지 범위가 북상하고 있다. 이에 따른 녹나무과 상록활엽수의 자생지 변화 예측을 위해 먼저, 식생의 분포와 관련이 깊은 온량지수와 한랭지수, 최한월 최저기온, 연평균기온 등 기후지표를 분석하였다. 그 변화량과 공간분포분석을 통해 우리나라 난온대 지역에 분포하는 녹나무과 상록활엽수 8종의 자생지 기후지표특성을 파악하였다. 또한, 기후지표특성을 바탕으로 MaxEnt 종 분포모형을 적용하여 기후변화 시나리오(RCP 4.5/8.5)에 따른 21세기 자생지 변화를 예측하였다. 녹나무과 상록활엽수 8종의 자생지 월 평균 기후지표 특성은 온량지수 116.9±10.8℃, 한랭지수 3.9±3.8℃, 연강수량 1495.7±455.4mm, 건습지수 11.7±3.5, 연평균 기온 14.4±1.1℃, 동계 평균 최저기온 1.0±2.1℃로 나타났다. 기후변화 시나리오 RCP 4.5에 근거한 녹나무과 상록활엽수의 분포는 전라남도와 경상남도를 포함하는 도서지방과 서·남해안의 인접지역, 동해안의 강원도 고성까지 분포가 확대되는 것으로 분석되었다. 기후변화 시나리오 RCP 8.5에 근거한 분포의 경우 전라남도와 경상남도의 전 지역과 전라북도, 충청남도, 경상북도, 수도권의 일부 지역을 제외한 대부분 지역으로 분포가 확대될 것으로 분석되었다. 기후변화에 대비한 녹나무과 상록활엽수의 보전을 위해서는 자생지 내·외 보전 기준설정 및 다양한 자생지 특성 분석이 수행되어야 한다. 또한, 기후지표를 기반으로 한 생물계절정 자료를 통해 기후변화에 따른 녹나무과 상록활엽수의 분포, 이동, 쇠퇴 등의 미세변화를 선제적으로 감지하고 보전관리 방안을 수립하여야 할 것이다.

Climate change leads to changes in phenological response and movement of plant habitats. Korea's evergreen broad-leaved forest has widened its distribution area compared for the past 20 years, and the range of its native habitats is moving northward. We analyzed climate indices such as the warmth index, the cold index, the lowest temperature in the coldest month, and the annual average temperature, which are closely related to vegetation distribution, to predict the change in the native habitat of Lauraceae evergreen broad-leaved trees. We also analyzed the change and spatial distribution to identify the habitat climate characteristics of 8 species of Lauraceae evergreen broad-leaved trees distributed in the warm temperate zone in Korea. Moreover, we predicted the natural habitat change in the 21st century according to the climate change scenario (RCP 4.5/8.5), applying the MaxEnt species distribution model. The monthly average climate index of the 8 species of Lauraceae evergreen broad-leaved trees was 116.9±10.8℃ for the temperate index, the cold index 3.9±3.8℃, 1495.7±455.4mm for the annual precipitation, 11.7±3.5 for the humidity index, 14.4±1.1℃ for the annual average temperature, and 1.0±2.1℃ for the lowest temperature of winter. Based on the climate change scenario RCP 4.5, the distribution of the Lauraceae evergreen broad-leaved trees was analyzed to expand to islands of Jeollanam-do and Gyeongsangnam-do, adjacent areas of the west and south coasts, and Goseong, Gangwon-do on the east coast. In the case of the distribution based on the climate change scenario RCP 8.5, it was analyzed that the distribution would expand to all of Jeollanam-do and Gyeongsangnam-do, and most regions except for some parts of Jeollabuk-do, Chungcheongnam-do, Gyeongsangbuk-do, and the capital region. For the conservation of Lauraceae evergreen broad-leaved trees to prepare for climate change, it is necessary to establish standards for conservation plans such as in-situ and ex-situ conservation and analyze various physical and chemical characteristics of native habitats. Moreover, it is necessary to preemptively detect changes such as distribution, migration, and decline of Lauraceae evergreen broad-leaved trees following climate change based on phenological response data based on climate indicators and establish conservation management plans.

키워드

참고문헌

  1. Box, E.O., D.W. Crumpacker and E.D. Hardin(1993) A climatic model for location of plant species in Florida, U.S.A. Journal of Biogeography 20: 629-644. https://doi.org/10.2307/2845519
  2. Bunyavejchewin, S.(1999) Structure and dynamics in seasonal dry evergreen forest in northeastern Thailand. Journal of Vegetation Science 10: 787-792. https://doi.org/10.2307/3237303
  3. Clark, J.S., M. Lewis and L. Horvath(2001) Invasion by extremes: Population spread with variation in dispersal and reproduction. American Naturalist 157: 537-554. https://doi.org/10.1086/319934
  4. Davis, F.W. and S. Goetz(1990) Modeling vegetation pattern using digital terrain data. Landscape Ecology 4: 69-80. https://doi.org/10.1007/BF02573952
  5. Fang, J.Y. and K. Yoda(1989) Climate and vegetation in China(II) distribution of main vegetation types and thermal climate. Ecol. Res. 4: 71-83. https://doi.org/10.1007/BF02346944
  6. Fang, J.Y., M. Ohsawa and T. Kira(1996) Vertical vegetation zones along 30˚N latitude in humid East Asia. Vegetatio 126: 135-149. https://doi.org/10.1007/BF00045600
  7. Fick, S.E. and R.J. Hijmans(2017) World Clim 2: New 1-km spatial resolution climate surfaces for global land areas. International Journal of Climatology 37: 4302-4315. https://doi.org/10.1002/joc.5086
  8. Groombridge, B.(1992) Global biodiversity: Status of the Earth's living resources. Chapman and Hall. 585pp.
  9. Hattori, T. and S. Nakanishi(1985) On the distributional limits of the lucidophyllous forests in the Japanese Archipelago. Bot. Mag. Tokyo 98: 17-33.
  10. Hsieh, C.F., Z.S. Chen, Y.M. Hsu, K.C. Yang and T.H. Hsieh(1998) Altitudinal zonation of evergreen broad-leaved forest on Mount Lopei, Taiwan. Journal of Vegetation Science 9: 201-212. https://doi.org/10.2307/3237119
  11. IPCC(2014) Climate change 2014: Synthesis report. Contribution of Working Groups I, II and III to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change. In Core Writing Team, R.K. Pachauri and L.A. Meyer (Eds.), IPCC, Geneva, Switzerland, 151pp.
  12. Jang, D.H., N.S. Wi and N.W. Park(2015) High-resolution spatial mapping and evaluation of temperature and rainfall in South Korea using a simple kriging with local means. Journal of Climate Research 10(2): 165-182. (in Korean with English abstract) https://doi.org/10.14383/cri.2015.10.2.165
  13. Jose, R.A., D.P. Maria, A. Carlos, B. Alfredo, D.D. Juan, G. Antonio, and F.P. Maria(2008) Laurel forest recovery during 20 years in an abandoned firebreak in Tenerife, Canary Islands. Acta Oecologica 33: 1-9. https://doi.org/10.1016/j.actao.2007.06.005
  14. Jung, J.M.(2014) Correlation analysis and growth prediction between climatic elements and tree diameter growth for coniferous species in South Korea. Graduate School, Kookmin University, 146pp. (in Korean with English summary)
  15. Kim, J.H.(1987) Phytosociological study on evergreen broad-leaved forest of Korean peninsula. Graduate School of Konkuk University, 115pp. (in Korean with English summary)
  16. Kim, K.H., M.S. Kim, G.W. Lee, D.H. Kang and B.H. Kwon(2013) The adjustment of radar precipitation estimation based on the kriging method. Journal of the Korean Earth Science Society 34(1): 13-27. (in Korean with English abstract) https://doi.org/10.5467/JKESS.2013.34.1.13
  17. Kim, K.M. and K.H. Park(2013) Spatial estimation of the site index for pinus densiplora using kriging. Journal of Korean Forest Society 102(4): 467-476. (in Korean with English abstract) https://doi.org/10.14578/JKFS.2013.102.4.467
  18. Kira, T.(1945) A new classification of climate in Eastern Asia as the basis of agricultural geography. Horticultural Institute, Kyoto University.
  19. Klotzli, F.(1988) On the global position of the evergreen broad-leaved(non-ombrophilous) forest in the subtropical and temperate zones. Veroff. Geobot. Inst. ETH Stiftung Rubel Zurich 98: 169-196.
  20. Koo, K.A., W.S. Kong and C.K. Kim(2001) Distribution of evergreen broad-leaved plants and climatic factors. Journal of the Korean Geographical Society 36(3): 247-257. (in Korean with English abstract)
  21. Lee, W.C and Y.J. Yim(2002) Plant geography. Kangwon National University Publisher, 412pp. (in Korean)
  22. Mucina, L., S. Pignatti, J.S. Rodweel, J.H. Schaminee and M. Chytry(1997) European vegetation survey: Case studies. Uppsala: Opulus Press, 238pp.
  23. Oh, B.U., D.G. Jo, S.C. Ko, B.H. Choi, W.K. Paik, G.Y. Chung, Y.M. Lee and C.G. Jang(2010) 300 target plants adaptable to climate change in the Korean Peninsula. National Korea Arboretum, 492pp.
  24. Ohashi, H., Y. Sasaki and K. Ohashi(2006) The northernmost limit of distribution of Quercus acuta Thunb. (Fagaceae). J. Jpa. Bot. 81: 173-187.
  25. Park, J.C., K.C. Yang and D.H. Jang(2010) Warmth index climate change warm temperate region evergreen broad-leaved forest zone. Konkuk University Climate Research Institute 5(1): 29-41. (in Korean with English abstract)
  26. Park, N.W. and D.H. Jang(2008) Mapping of temperature and rainfall using DEM and multivariate kriging. Journal of the Korean Geographical Society 43(6): 1002-1015. (in Korean with English abstract)
  27. Park, S.W.(2016) Distribution of warm temperate evergreen broad-leaved trees change due to climate change. Graduate School of Kyung Hee University, 158pp. (in Korean with English abstract)
  28. Phillips, S.J., R.P. Anderson and R.E. Schapire(2006) Maximum entropy modeling of species geographic distributions. Ecol. Model. 190: 231-259. https://doi.org/10.1016/j.ecolmodel.2005.03.026
  29. Phillips, S.J., R.P. Anderson, M. Dudik, R.E. Schapire and M.E. Blair(2017) Opening the black box: An open-source release of Maxent. Ecography 40(7): 887-893. https://doi.org/10.1111/ecog.03049
  30. Sander, D.H.(1971) Soil properties and siberian elm tree growth in Nebraska wind-break. Soil Science 112(5): 357-363. https://doi.org/10.1097/00010694-197111000-00011
  31. Song, Y.C.(1988) Broad-leaved evergreen forests in Central Japan in comparison with Eastern China. Veroff. Geobot. Inst. ETH Stiftung Rubel Zurich 98: 197-224. (in Korean with English abstract)
  32. Sung, C.Y., H.T. Shin, S.H. Choi and H.S. Song(2018) Predicting potential habitat for hanabusaya asiatica in the North and South Korean border region using maxent. Korean J. Environ. Ecol. 32(5): 469-477. (in Korean with English abstract) https://doi.org/10.13047/KJEE.2018.32.5.469
  33. Tagawa, H.(1995) Distribution of lucidophyllous oak-laurel forest formation in Asia and other areas. Tropics 5(1): 1-40. https://doi.org/10.3759/tropics.5.1
  34. Walter, H.(1968) Die vegetation der erde II. Die gamassigten und arktischen zonen. Jena: VEB Gustav Fischer Verlag. 1001pp.
  35. Wang, C.W.(1961) The forests of china with a survey of grassland and desert vegetation. Cabot Foundation Publ. 5, Harvard University, Cambridge Mass, 326pp.
  36. Woodward F.I. and I.F. Mckee(1991) Vegetation and climate. Environment International 17: 535-546. https://doi.org/10.1016/0160-4120(91)90166-N
  37. Woodward, F.I.(1987) Climate and plant distribution. Cambridge University Press, London, England, 174pp.
  38. Yang, I.S. and W. Kim(1972) Conspectus relation between the distribution of evergreen broad-leaved trees and the climatic factor in southern area of Korea. Korean Journal of Plant Taxonomy 4(1): 11-18. (in Korean with English abstract) https://doi.org/10.11110/kjpt.1972.4.1.011
  39. Yang, K.C. and J.K. Shim(2007) Distribution of major plant communities based on the climatic conditions and topographic features in South Korea. Korean Journal of Environmental Biology 25(2): 168-177. (in Korean with English abstract)
  40. Yim, Y.J. and T. Kira(1975) Distribution of forest vegetation and climate in the Korean peninsula I, Distribution of some indices of thermal climate. Japanese Journal of Ecology 25(2): 32-43.
  41. Yun, J.H., J.H. Kim, K.H. Oh and B.Y. Lee(2011) Distributional change and climate condition of warm-temperate evergreen broad-leaved trees in Korea. Korean Journal of Environment and Ecology 25(1): 47-56. (in Korean with English abstract)
  42. Yun, J.H., K. Nakao, I. Tsuyama, M. Higa, T. Matsui, C. Park, B. Lee and N. Tanaka(2014) Does future climate change facilitate expansion of evergreen broad-leaved tree species in the human-disturbed landscape of the Korean Peninsula? Implication for monitoring design of the impact assessment. Journal of Forest Research 19(1): 174-183. https://doi.org/10.1007/s10310-013-0401-6