DOI QR코드

DOI QR Code

Identification of the Antidepressant Vilazodone as an Inhibitor of Inositol Polyphosphate Multikinase by Structure-Based Drug Repositioning

  • Received : 2020.02.18
  • Accepted : 2020.03.04
  • Published : 2020.03.31

Abstract

Inositol polyphosphate multikinase (IPMK) is required for the biosynthesis of inositol phosphates (IPs) through the phosphorylation of multiple IP metabolites such as IP3 and IP4. The biological significance of IPMK's catalytic actions to regulate cellular signaling events such as growth and metabolism has been studied extensively. However, pharmacological reagents that inhibit IPMK have not yet been identified. We employed a structure-based virtual screening of publicly available U.S. Food and Drug Administration-approved drugs and chemicals that identified the antidepressant, vilazodone, as an IPMK inhibitor. Docking simulations and pharmacophore analyses showed that vilazodone has a higher affinity for the ATP-binding catalytic region of IPMK than ATP and we validated that vilazodone inhibits IPMK's IP kinase activities in vitro. The incubation of vilazodone with NIH3T3-L1 fibroblasts reduced cellular levels of IP5 and other highly phosphorylated IPs without influencing IP4 levels. We further found decreased Akt phosphorylation in vilazodone-treated HCT116 cancer cells. These data clearly indicate selective cellular actions of vilazodone against IPMK-dependent catalytic steps in IP metabolism and Akt activation. Collectively, our data demonstrate vilazodone as a method to inhibit cellular IPMK, providing a valuable pharmacological agent to study and target the biological and pathological processes governed by IPMK.

Keywords

References

  1. Berridge, M.J., Lipp, P., and Bootman, M.D. (2000). The versatility and universality of calcium signalling. Nat. Rev. Mol. Cell Biol. 1, 11-21. https://doi.org/10.1038/35036035
  2. Chakraborty, A., Kim, S., and Snyder, S.H. (2011). Inositol pyrophosphates as mammalian cell signals. Sci. Signal. 4, 1-12.
  3. Cruz, M.P. (2012). Vilazodone HCL (Viibryd): a serotonin partial agonist and reuptake inhibitor for the treatment of major depressive disorder. P. T. 37, 28-31.
  4. Dovey, C.M., Diep, J., Clarke, B.P., Hale, A.T., McNamara, D.E., Guo, H., Brown, N.W., Cao, J.Y., Grace, C.R., Gough, P.J., et al. (2018). MLKL requires the inositol phosphate code to execute necroptosis. Mol. Cell 70, 936-948.e7. https://doi.org/10.1016/j.molcel.2018.05.010
  5. Frederick, J.P., Mattiske, D., Wofford, J.A., Megosh, L.C., Drake, L.Y., Chiou, S.T., Hogan, B.L.M., and York, J.D. (2005). An essential role for an inositol polyphosphate multikinase, Ipk2, in mouse embryogenesis and second messenger production. Proc. Natl. Acad. Sci. U. S. A. 102, 8454-8459. https://doi.org/10.1073/pnas.0503706102
  6. Gao, Y. and Wang, H.Y. (2007). Inositol pentakisphosphate mediates Wnt/${\beta}$-catenin signaling. J. Biol. Chem. 282, 26490-26502. https://doi.org/10.1074/jbc.M702106200
  7. Gu, C., Stashko, M.A., Puhl-Rubio, A.C., Chakraborty, M., Chakraborty, A., Frye, S.V., Pearce, K.H., Wang, X., Shears, S.B., and Wang, H. (2019). Inhibition of inositol polyphosphate kinases by quercetin and related flavonoids: a structure-activity analysis. J. Med. Chem. 62, 1443-1454. https://doi.org/10.1021/acs.jmedchem.8b01593
  8. Jackson, S.G., Al-Saigh, S., Schultz, C., and Junop, M.S. (2011). Inositol pentakisphosphate isomers bind PH domains with varying specificity and inhibit phosphoinositide interactions. BMC Struct. Biol. 11, 1-9. https://doi.org/10.1186/1472-6807-11-1
  9. Kim, S., Kim, S.F., Maag, D., Maxwell, M.J., Resnick, A.C., Juluri, K.R., Chakraborty, A., Koldobskiy, M.A., Cha, S.H., Barrow, R., et al. (2011). Amino acid signaling to mTOR mediated by inositol polyphosphate multikinase. Cell Metab. 13, 215-221. https://doi.org/10.1016/j.cmet.2011.01.007
  10. Kim, W., Kim, E., Min, H., Kim, M.G., Eisenbeis, V.B., Dutta, A.K., Pavlovic, I., Jessen, H.J., Kim, S., and Seong, R.H. (2019). Inositol polyphosphates promote T cell-independent humoral immunity via the regulation of Bruton's tyrosine kinase. Proc. Natl. Acad. Sci. U. S. A. 116, 12952-12957. https://doi.org/10.1073/pnas.1821552116
  11. Lee, J.Y., Kim, Y.R., Park, J., and Kim, S. (2012). Inositol polyphosphate multikinase signaling in the regulation of metabolism. Ann. N. Y. Acad. Sci. 1271, 68-74. https://doi.org/10.1111/j.1749-6632.2012.06725.x
  12. Lee, T.S., Lee, J.Y., Kyung, J.W., Yang, Y., Park, S.J., Lee, S., Pavlovic, I., Kong, B., Jho, Y.S., Jessen, H.J., et al. (2016). Inositol pyrophosphates inhibit synaptotagmin-dependent exocytosis. Proc. Natl. Acad. Sci. U. S. A. 113, 8314-8319. https://doi.org/10.1073/pnas.1521600113
  13. Maag, D., Maxwell, M.J., Hardesty, D.A., Boucher, K.L., Choudhari, N., Hanno, A.G., Ma, J.F., Snowman, A.S., Pietropaoli, J.W., Xu, R., et al. (2011). Inositol polyphosphate multikinase is a physiologic PI3-kinase that activates Akt/PKB. Proc. Natl. Acad. Sci. U. S. A. 108, 1391-1396. https://doi.org/10.1073/pnas.1017831108
  14. Morgan, H.L. (1965). The generation of a unique machine description for chemical structures-a technique developed at chemical abstracts service. J. Chem. Doc. 5, 107-113. https://doi.org/10.1021/c160017a018
  15. Morgan-Lappe, S., Woods, K.W., Li, Q., Anderson, M.G., Schurdak, M.E., Luo, Y., Giranda, V.L., Fesik, S.W., and Leverson, J.D. (2006). RNAi-based screening of the human kinome identifies Akt-cooperating kinases: a new approach to designing efficacious multitargeted kinase inhibitors. Oncogene 25, 1340-1348. https://doi.org/10.1038/sj.onc.1209169
  16. Odom, A.R., Stahlberg, A., Wente, S.R., and York, J.D. (2000). A role for nuclear inositol 1,4,5-trisphosphate kinase in transcriptional control. Science 287, 2026-2029. https://doi.org/10.1126/science.287.5460.2026
  17. Park, S.J., Lee, S., Park, S.E., and Kim, S. (2018). Inositol pyrophosphates as multifaceted metabolites in the regulation of mammalian signaling networks. Anim. Cells Syst. 22, 1-6. https://doi.org/10.1080/19768354.2017.1408684
  18. Piccolo, E., Vignati, S., Maffucci, T., Innominato, P.F., Riley, A.M., Potter, B.V.L., Pandolfi, P.P., Broggini, M., Iacobelli, S., Innocenti, P., et al. (2004). Inositol pentakisphosphate promotes apoptosis through the PI 3-K/Akt pathway. Oncogene 23, 1754-1765. https://doi.org/10.1038/sj.onc.1207296
  19. Rao, S.N., Head, M.S., Kulkarni, A., and LaLonde, J.M. (2007). Validation studies of the site-directed docking program LibDock. J. Chem. Inf. Model. 47, 2159-2171. https://doi.org/10.1021/ci6004299
  20. Razzini, G., Berrie, C.P., Vignati, S., Broggini, M., Mascetta, G., Brancaccio, A., and Falasca, M. (2000). Novel functional PI 3-kinase antagonists inhibit cell growth and tumorigenicity in human cancer cell lines. FASEB J. 14, 1179-1187. https://doi.org/10.1096/fasebj.14.9.1179
  21. Rogers, D. and Hahn, M. (2010). Extended-connectivity fingerprints. J. Chem. Inf. Model. 50, 742-754. https://doi.org/10.1021/ci100050t
  22. Saiardi, A., Erdjument-Bromage, H., Snowman, A.M., Tempst, P., and Snyder, S.H. (1999). Synthesis of diphosphoinositol pentakisphosphate by a newly identified family of higher inositol polyphosphate kinases. Curr. Biol. 9, 1323-1326. https://doi.org/10.1016/S0960-9822(00)80055-X
  23. Shen, X., Xiao, H., Ranallo, R., Wu, W.H., and Wu, C. (2003). Modulation of ATP-dependent chromatin-remodeling complexes by inositol polyphosphates. Science 299, 112-114. https://doi.org/10.1126/science.1078068
  24. Steger, D.J., Haswell, E.S., Miller, A.L., Wente, S.R., and O'Shea, E.K. (2003). Regulation of chromatin remodeling by inositol polyphosphates. Science 299, 114-116. https://doi.org/10.1126/science.1078062
  25. Streb, H., Irvine, R.F., Berridge, M.J., and Schulz, I. (1983). Release of Ca2+ from a nonmitochondrial intracellular store in pancreatic acinar cells by inositol-1,4,5-trisphosphate. Nature 306, 67-69. https://doi.org/10.1038/306067a0
  26. Wang, Y. and Wang, H.Y. (2012). Dvl3 translocates IPMK to the cell membrane in response to Wnt. Cell. Signal. 24, 2389-2395. https://doi.org/10.1016/j.cellsig.2012.08.009
  27. Watson, P.J., Fairall, L., Santos, G.M., and Schwabe, J.W.R. (2012). Structure of HDAC3 bound to co-repressor and inositol tetraphosphate. Nature 481, 335-340. https://doi.org/10.1038/nature10728

Cited by

  1. Inositol Pyrophosphates: Signaling Molecules with Pleiotropic Actions in Mammals vol.25, pp.9, 2020, https://doi.org/10.3390/molecules25092208