DOI QR코드

DOI QR Code

차량 네트워크에서 RSU를 이용한 리소스 검색 및 클라우드 구축 방안

A RSU-Aided Resource Search and Cloud Construction Mechanism in VANETs

  • 이윤형 (충북대학교 전파통신공학) ;
  • 이의신 (충북대학교 정보통신공학부)
  • 투고 : 2019.10.10
  • 심사 : 2019.11.09
  • 발행 : 2020.03.31

초록

무선 통신 및 차량 기술의 발전으로 차량 간 네트워크(VANETs)는 차량간에 데이터를 전달할 수있게 되었다. 최근 VANETs은 차량의 자원을 공유하고 사용하여 부가가치 서비스를 창출하기 위해 차량 클라우드(VC)모델이 등장했다. VC를 구성하기위해서 차량은 자원을 제공하는 차량을 검색해야한다. 하지만 단일 홉 검색은 범위가 작고 통신 범위 밖에 공급차량을 검색할 수 없다. 반면 멀티 홉 검색은 넓은 통신범위를 검색 하지만 차량의 이동성으로 인해 연결 끊김이 잦고 검색에 사용되는 트래픽이 크다. 최근 많은 도로변 장치(RSU)가 도로에 배치되어 차량 정보를 수집하고 인터넷에 연결하는 역할을 한다. 따라서 VANETs에서 RSU를 이용한 차량 자원 검색 및 클러스터 구성 메커니즘을 제안한다. 본 논문에서 RSU는 차량의 위치 및 이동성 정보를 수집하고 수집된 정보를 통해 요청 차량의 VC를 구성하는데 필요한 자원을 제공 할 수 있는 공급차량을 선정한다. 제안 방안에서, 자원을 공급하는 차량을 결정하기 위한 기준으로 각 후보 차량과 요청 차량 사이의 연결 지속시간, 각 후보 차량의 가용 자원 및 요청 차량에 대한 연결 시작 시간을 고려한다. 시뮬레이션을 통해 기존 방안들과 비교하고 성능의 향상을 확인 하였다.

With the fast development in wireless communications and vehicular technologies, vehicular ad hoc networks (VANETs) have enabled to deliver data between vehicles. Recently, VANETs introduce a Vehicular Cloud (VC) model for collaborating to share and use resources of vehicles to create value-added services. To construct a VC, a vehicle should search vehicles that intend to provide their own resource. The single-hop search cannot search enough provider vehicles due to a small coverage and non-line-of-sights of communications. On the other hand, the multi-hop search causes very high traffics for large coverage searching and frequent connection breakages. Recently, many Roadside Units (RSUs) have been deployed on roads to collect the information of vehicles in their own coverages and to connect them to Internet. Thus, we propose a RSU-aided vehicular resource search and cloud construction mechanism in VANETS. In the proposed mechanism, a RSU collects the information of location and mobility of vehicles and selects provider vehicles enabled to provide resources needed for constructing a VC of a requester vehicle based on the collected information. In the proposed mechanism, the criteria for determining provider vehicles to provide resources are the connection duration between each candidate vehicle and the requester vehicle, the resource size of each candidate vehicle, and its connection starting time to the requester vehicle. Simulation results verify that the proposed mechanism achieves better performance than the existing mechanism.

키워드

참고문헌

  1. F. Li and Y. Wang, "Routing in Vehicular Ad Hoc Networks: Survey," IEEE Vehicular Technology Magazine, Vol.2, No.2, pp.12-22, Jun. 2007. https://doi.org/10.1109/MVT.2007.912927
  2. S. Yamada, "The strategy and deployment plan for VICS," IEEE Communication, Vol.34, No.10, pp.94-97, 1996. https://doi.org/10.1109/35.544328
  3. D. Reichardt, M. Miglietta, L. Moretti, P. Morsink, and W. Schulz, "CarTAKL 2000: safe and comfortable driving based upon inter-vehicle-communication," in Proc. IEEE Intelligent Vehicle Symposium, Jun. 2002.
  4. C. Consortium, www.car-2-car.org.
  5. F. Bai and B. Krishnamachari, "Exploiting the Wisdom of the Crowd: Localized, Distributed Information-Centric VANETs," IEEE Commun. Mag., Vol.48, No.5, May 2010, pp.138-46. https://doi.org/10.1109/MCOM.2010.5458375
  6. E. Schoch, F. Kargl, M. Weber, and T. Leinmuller, "Communication Patterns in VANETs," IEEE Communications Magazine, pp.119-125, Nov. 2008.
  7. V. Kumar, S. Mishra, and N. Chand, "Applications of VANETs: Present and Future," Communications and Network, 5, pp.12-15, 2013. https://doi.org/10.4236/cn.2013.51B004
  8. E. Lee et al., "Vehicular Cloud Networking: Architecture and Design Principles," IEEE Communications Magazine, pp.148-155, Feb. 2014.
  9. M. Whaiduzzaman et al., "A survey on vehicular cloud computing," Journal of Network and Computer Applications, Vol.40, pp.325-344, 2013. https://doi.org/10.1016/j.jnca.2013.08.004
  10. M. Gerla, "Vehicular cloud computing," in Proc. 11th IEEE Annual Mediterranean Ad Hoc Networking Workshop (Med-Hoc-Net), 2012.
  11. P. Fonseca, R. Rodrigues, A. Gupta, and B. Liskov, "Full information lookups for peer-to-peer overlays," IEEE Transactions on Parallel and Distributed Systems, Vol.20, No.9, Sep. 2009.
  12. L. Monnerat and C. L. Amorim, "An effective single-hop distributed hash table with high lookup performance and low traffic overhead," Concurrency and Computation: Practice & Experience, Vol.27. No.7, May 2015.
  13. R. E. Siba, T. Atchian, J. B. Abdo, R. Tawil, and J. Demerjian, "Connectivity-aware service provision in vehicular cloud," in Proc. Of the International Conference on Cloud Technologies and Applications (CloudTech), Jun. 2015.
  14. R. Meneguette, A. Boukerche, and R. De Grande, "SMART: an efficient resource search and management scheme for vehicular cloud-connected system," in 2016 IEEE Global Communications Conference: Mobile and Wireless Networks (Globecom2016 MWN), Washington, USA, Dec.
  15. R. Meneguette and A. Boukerche, "Peer-to-peer Protocol for Allocated Resources in Vehicular Cloud Based on V2V Communication," in 2017 IEEE Wireless Communications and Networking Conference (WCNC), San Francisco, CA, USA, Mar.
  16. D. Kim, Y. Velasco, W. Wang, R. Uma, R. Hussain, and S. Lee, "A New Comprehensive RSU Installation Strategy for Cost-Efficient VANET Deployment," IEEE Transactions on Vehicular Technology, Vol.66, No.5, May 2017.
  17. P. Li, T. Zhang, C. Huang, X. Chen, and B. Fu, "RSU-Assisted Geocast in Vehicular Ad Hoc Networks," IEEE Wireless Communications, Vol.24. No.1, Feb. 2017.
  18. Alessandro Bazzi, Barbara M. Masini, Alberto Zanella, and Ilaria Thibault, "On the Performance of IEEE 802.11p and LTE-V2V for the Cooperative Awareness of Connected Vehicles," IEEE Transactions of Vehicular Technology, Vol.66, No.11, Nov. 2017.
  19. NS-3, [online] Available: http://www.nsnam.org/