References
- R. A. Adams, Sobolev Spaces, Academic Press, New York, 1975.
- G. Cao, Fredholm properties of Toeplitz operators on Dirichlet spaces, Pacific J. Math. 188 (1999), no. 2, 209-223. https://doi.org/10.2140/pjm.1999.188.209
- B. R. Choe, H. Koo, and Y. J. Lee, Commuting Toeplitz operators on the polydisk, Trans. Amer. Math. Soc. 356 (2004), no. 5, 1727-1749. https://doi.org/10.1090/S0002-9947-03-03430-5
- J. B. Conway, A Course in Operator Theory, Graduate Studies in Mathematics, 21, American Mathematical Society, Providence, RI, 2000.
- Y. J. Lee, Compact sums of Toeplitz products and Toeplitz algebra on the Dirichlet space, Tohoku Math. J. (2) 68 (2016), no. 2, 253-271. http://projecteuclid.org/euclid.tmj/1466172772
- Y. J. Lee, Fredholm Toeplitz operators on the pluriharmonic Dirichlet space, Honam Math. J. 39 (2017), no. 2, 175-185. https://doi.org/10.5831/HMJ.2017.39.2.175
- Y. J. Lee and K. Na, The essential norm of a sum of Toeplitz products on the Dirichlet space, J. Math. Anal. Appl. 431 (2015), no. 2, 1022-1034. https://doi.org/10.1016/j.jmaa.2015.06.028
- G. McDonald, Fredholm properties of a class of Toeplitz operators on the ball, Indiana Univ. Math. J. 26 (1977), no. 3, 567-576. https://doi.org/10.1512/iumj.1977.26.26044
-
W. Rudin, Function Theory in the Unit Ball of
$C^n$ , Springer-Verlag, New York, 1980. - K. Zhu, Spaces of Holomorphic Functions in the Unit Ball, Graduate Texts in Mathematics, 226, Springer-Verlag, New York, 2005.