DOI QR코드

DOI QR Code

SMOOTH POINTS OF 𝓛s(n𝑙2)

  • Kim, Sung Guen (Department of Mathematics Kyungpook National University)
  • Received : 2019.03.20
  • Accepted : 2019.11.19
  • Published : 2020.03.31

Abstract

For n ≥ 2, we characterize the smooth points of the unit ball of 𝓛s(n𝑙2).

Keywords

References

  1. Y. S. Choi and S. G. Kim, The unit ball of P($^2l^2_2$), Arch. Math. (Basel) 71 (1998), no. 6, 472-480. https://doi.org/10.1007/s000130050292
  2. Y. S. Choi and S. G. Kim, Smooth points of the unit ball of the space P($^2l_1$), Results Math. 36 (1999), no. 1-2, 26-33. https://doi.org/10.1007/BF03322099
  3. S. Dineen, Complex analysis on innite-dimensional spaces, Springer Monographs in Mathematics, Springer-Verlag London, Ltd., London, 1999. https://doi.org/10.1007/978-1-4471-0869-6
  4. B. C. Grecu, Smooth 2-homogeneous polynomials on Hilbert spaces, Arch. Math. (Basel) 76 (2001), no. 6, 445-454. https://doi.org/10.1007/PL00000456
  5. R. B. Holmes, Geomeric Functional Anaysis and its Applications, Springer-Verlag, New York, 1975.
  6. S. G. Kim, The unit ball of Ls($^2l^2_{\infty}$), Extracta Math. 24 (2009), no. 1, 17-29.
  7. S. G. Kim, Smooth polynomials of P($^2D_*(1, W)^2$), Math. Proc. R. Ir. Acad. 113A (2013), no. 1, 45-58. https://doi.org/10.3318/PRIA.2013.113.05
  8. S. G. Kim, The geometry of $L_s(^3l^2_{\infty})$, Commun. Korean Math. Soc. 32 (2017), no. 4, 991-997. https://doi.org/10.4134/ckms.c170016
  9. S. G. Kim, The Mazur density theorem for P($P(^{2}{\mathbb{R}}^{2} _{h(\frac{1}{2})})$, Preprint.