References
- H. H. Han, J. Y. Lee, K. D. Jung & S. H. Lee. (2018). Patch Information based Linear Interpolation for Generating Super-Resolution Images in a Single Image. Journal of the Korea Convergence Society, 9(6), 45-52. DOI : 10.15207/JKCS.2018.9.6.045
- H. J. Kim, Y. S. Park, K. B. Kim & S. H. Lee. (2019). Modified HOG Feature Extraction for Pedestrian Tracking. Journal of the Korea Convergence Society, 10(3), 39-47. DOI : 10.15207/JKCS.2019.10.3.039
- D. I. Kim, G. S. Lee, K. H. Han & S. H. Lee. (2019). A Study on the Improvement of Skin Loss Area in Skin Color Extraction for Face Detection. Journal of the Korea Convergence Society, 10(5), 1-8. DOI : 10.15207/JKCS.2019.10.5.001
- G. O. Kim, G. S. Lee & S. H. Lee. (2014). An Edge Extraction Method Using K-Means Clustering In Image, Journal of Digital Convergence, 12(11), 281-288. DOI : 10.14400/JDC.2014.12.11.281
- T. H. Yoo, G. S. Lee & S. H. Lee. (2012). Window Production Method based on Low-Frequency Detection for Automatic Object Extraction of Grabcut, Journal of Digital Convergence, 10(8), 211-217. DOI : 10.14400/JDPM.2012.10.8.211
- E. Rhee. (2017). Security Algorithm for Vehicle Type Recognition. Journal of Convergence for Information Technology, 7(2), 77-82. DOI : 10.22156/CS4SMB.2017.7.2.077
- M. K. Kwon & H. S. Yang. (2017). A scene search method based on principal character identification using convolutional neural network. Journal of Convergence for Information Technology, 7(2), 31-36. DOI : 10.22156/CS4SMB.2017.7.2.031
- Y. Tai, J. Yang & X. Liu. (2017). Image super-resolution via deep recursive residual network. In Proceedings of the IEEE conference on computer vision and pattern recognition (pp. 3147-3155). DOI : 10.1109/cvpr.2017.298
- R. W. Gerchberg. (1974). Super-resolution through error energy reduction. Optica Acta: International Journal of Optics, 21(9), 709-720. DOI : 10.1080/713818946
- L. C. Pickup, S. J. Roberts & A. Zisserman. (2004). A sampled texture prior for image super-resolution. In Advances in neural information processing systems (pp. 1587-1594). DOI : 10.1109/icip.2012.6467332
- A. Corduneanu & J. C. Platt. (2005, September). Learning spatially-variable filters for super-resolution of text. In IEEE International Conference on Image Processing 2005 (1, pp. I-849). IEEE. DOI : 10.1109/icip.2005.1529884
- W. Liu, D. Lin & X. Tang. (2005, July). Neighbor combination and transformation for hallucinating faces. In 2005 IEEE International Conference on Multimedia and Expo (pp. 4-pp). IEEE. DOI : 10.1109/icme.2005.1521381
- D. Datsenko & M. Elad. (2007). Example-based single document image super-resolution: a global MAP approach with outlier rejection. Multidimensional Systems and Signal Processing, 18(2-3), 103-121. DOI : 10.1007/s11045-007-0018-z
- M. Elad & D. Datsenko. (2008). Example-based regularization deployed to super-resolution reconstruction of a single image. The Computer Journal, 52(1), 15-30. DOI : 10.1093/comjnl/bxm008
- L. Li & Y. Wang. (2008, October). Face super-resolution using a hybrid model. In 2008 9th International Conference on Signal Processing (pp. 1153-1156). IEEE. DOI : 10.1109/icosp.2008.4697334
- J. Yang, Z. Wang, Z. Lin, S. Cohen & T. Huang. (2012). Coupled dictionary training for image super-resolution. IEEE transactions on image processing, 21(8), 3467-3478. DOI : 10.1109/tip.2012.2192127
- D. Glasner, S. Bagon & M. Irani. (2009, September). Super-resolution from a single image. In 2009 IEEE 12th international conference on computer vision (pp. 349-356). IEEE. DOI : 10.1109/iccv.2009.5459271
- J. Yang, J. Wright, T. S. Huang & Y. Ma. (2010). Image super-resolution via sparse representation. IEEE transactions on image processing, 19(11), 2861-2873. DOI : 10.1109/icip.2011.6115635
- D. Martin, C. Fowlkes, D. Tal & J. Malik. (2001, July). A database of human segmented natural images and its application to evaluating segmentation algorithms and measuring ecological statistics. Vancouver:: Iccv. DOI : 10.1109/iccv.2001.937655