DOI QR코드

DOI QR Code

FUZZY PRIME SPECTRUM OF C-ALGEBRAS

  • Received : 2019.10.02
  • Accepted : 2020.01.02
  • Published : 2020.03.30

Abstract

In this paper, we define fuzzy prime ideals of C-algebras and investigate some of their properties. Furthermore, we study the topological properties of the space of fuzzy prime ideals of C-algebra equipped with the hull-kernel topology.

Keywords

References

  1. B. A. Alaba and G. M. Addis, Fuzzy ideals of C-algebras, Intern. J. Fuzzy Mathematical Archive 16 (1) (2018), 21-31.
  2. B. A. Alaba and G. M. Addis, L-Fuzzy ideals in universal algebras, Ann. Fuzzy Math. Inform. 17 (1) (2019), 31-39. https://doi.org/10.30948/afmi.2019.17.1.31
  3. B. A. Alaba and G. M. Addis, L-Fuzzy prime ideals in universal algebras, Advances in Fuzzy Systems, vol. 2019, Article ID 5925036, 7 pages, 2019.
  4. B. A. Alaba and G. M. Addis, L-Fuzzy semi-prime ideals in universal algebras, Korean J. Math. 27 (2) (2019), 329-342. https://doi.org/10.11568/KJM.2019.27.2.329
  5. B. A. Alaba and G. M. Addis, Fuzzy congruence relations on almost distributive lattices, Ann. Fuzzy Math. Inform. 14 (3), (2017) 315-330. https://doi.org/10.30948/afmi.2017.14.3.315
  6. Y. Bo and W. Wu, Fuzzy ideals on a distributive lattice, Fuzzy Sets and Systems 35 (1990), 231-240. https://doi.org/10.1016/0165-0114(90)90196-D
  7. G. Birkhoof, Lattice theory, Amer. Math. Soc. Colloquium publications, Vol. 24 (1967).
  8. G. Gratzer, General lattice theory, Academic Press, New York(1978).
  9. F. Guzman and C. C. Squier, The algebra of conditional logic, Algebra Universalis 27 (1990), 88-110. https://doi.org/10.1007/BF01190256
  10. A. K. Katsaras and D.B. Liu, Fuzzy vector spaces and fuzzy topological vector spaces, J. Math. Anal. Appl. 58 (1977), 135-146. https://doi.org/10.1016/0022-247X(77)90233-5
  11. W. J. Liu, Fuzzy invariant subgroups and fuzzy ideals, Fuzzy Sets and Systems 8 (1982) 133-139. https://doi.org/10.1016/0165-0114(82)90003-3
  12. G. C. Rao and P. Sundarayya, C-algebra as a poset, International Journal of Mathematical sciences 4 (2005), 225-236.
  13. G. C. Rao and P. Sundarayya, Decomposition of a C-algebra, Int. J. Math. Math. Sci. 2006, 1-8.
  14. A. Rosenfeld, Fuzzy Groups, J. Math. Anal. Appl. 35 (1971), 512-517 https://doi.org/10.1016/0022-247X(71)90199-5
  15. U. M. Swamy, G. C. Rao and R. V. G. RaviKumar, Centre of a C-algebra, Southeast Asian Bulletin of Mathematics 27 (2003), 357-368.
  16. U. M. Swamy, G. C. Rao, P. Sundarayya and S. K. Vali, Semilattice structures on a C-algebra, Southeast Asian Bulletin of Mathematics 33 (2009), 551-561.
  17. U. M. Swamy and K. L. N. Swamy, Fuzzy prime ideals of rings, J. Math. Anal. Appl. 134 (1988), 94-103. https://doi.org/10.1016/0022-247X(88)90009-1
  18. S. K. Vali, P. Sundarayya and U. M. Swamy, Ideals of C-algebras, Asian-European Journal of Mathematics 3 (2010), 501-509 https://doi.org/10.1142/S1793557110000374
  19. S. K. Vali, P. Sundarayya and U. M. Swamy, Ideal congruences on C-algebras, International Journal of Open Problems in Computer Science and Mathematics 3 (2010), 295-303
  20. S. K. Vali and U. M. Swamy, Prime spectrum of a C-algebra, International Journal of Open Problems in Computer Science and Mathematics 4 (2011), 295-303.
  21. C. K. Wong, Fuzzy point and local properties of fuzzy topology, J. Math. Anal. Appl. 46 (l974), 316-328. https://doi.org/10.1016/0022-247X(74)90242-X
  22. L. A. Zadeh, Fuzzy sets, Inform. and Control 8 (1965), 338-353. https://doi.org/10.1016/S0019-9958(65)90241-X

Cited by

  1. Fuzzy Annihilator Ideals of $ C $ -Algebra vol.2021, 2020, https://doi.org/10.1155/2021/7481960