DOI QR코드

DOI QR Code

Phylogenetic Diversity and Antibacterial Activity in Bacterium from Balloon Fish (Diodon holocanthus) of Jeju Island

제주 연안의 가시복(Diodon holoanthus)에서 분리된 세균의 다양성 및 항균활성 효과

  • Moon, Chae-Yun (Department of Aquatic Biomedical Sciences, Jeju National University) ;
  • Ko, Jun-Cheol (Jeju Fisheries Research Institute, National Institute of Fisheries Science) ;
  • Kim, Min-Seon (Jeju Fisheries Research Institute, National Institute of Fisheries Science) ;
  • Heo, Moon-Soo (Department of Aquatic Biomedical Sciences, Jeju National University)
  • 문채윤 (제주대학교 해양과학대학 수산생명의학과) ;
  • 고준철 (국립수산과학원 제주수산연구소) ;
  • 김민선 (국립수산과학원 제주수산연구소) ;
  • 허문수 (제주대학교 해양과학대학 수산생명의학과)
  • Received : 2019.08.13
  • Accepted : 2019.11.11
  • Published : 2020.03.28

Abstract

Over the past 20 years, global warming has transformed the marine ecosystem of the Jeju Island into a subtropical zone making it conducive to the production of tropical fishes. Recently, the balloon fish (Diodon holoanthus) has been found off the coast of the Jeju Island. In this study, we analyzed the diversity of its intestinal microorganisms as a representative for the surrounding environment. In addition, the isolates were evaluated for their antibacterial activity. A total of 161 strains of various species were identified and isolated using 16S ribosomal RNA gene sequence analysis. They were separated into three groups, of which Phylum Proteobacteria was found to be the most dominant with 91% sequence similarity. This includes the class γ-proteobacteria that is made up of twelve genera and twenty-four hundred species. The second group comprised strains of the genus Vibrio, made up of 35% Photobacteria, 32% Shewanella, and 6% Psychrobacter. It was also determined that 4% of the isolates were Acinetobacter, 3% were Enterovibrio, while Moraxella_g2 accounted for 1% of the total isolates. Class α-proteobactera includes five genera and five species; Brevundimonas, Allorhizobium, Pseudoceanicola and Erythrobcter, each accounting for 1% of the total isolates. The Firmicute strains belonged to six genera and ten species. 5% of the strains were Terribacillus, while Paenibacillus, Salinicoccus, Staphylococcus and Streptococcus accounted for 1% each of the total isolates. Actinobacteria accounted for the final phylum with strains belonging to three genera and ten species with Janibacter, Micrococcus and Isoptericola each accounting for 1% of the total isolates.

지구 온난화로 인한 제주도의 해양 생태계는 지난 20년동안 온대에서 아열대로 변화되었다. 이러한 기후 변화는 난대성 어류가 서식할 수 있는 환경이 되며, 최근 제주 연안에서는 가시복(diodon holoanthus)이 발견되고 있다. 본 연구에서는 가시복의 장내미생물의 다양성을 파악하였다. 그리고 다양한 균주 중 어류 또는 인체 유해세균 가능성을 확인하고자 항균 활성 탐색을 수행하였다. Proteobacteria는 분리 된 균주 중 91%를 차지한 우점문으로 γ-proteobacteria강은 11속 142종으로 Vibrio속 35%, Photobacterium속 32%, Shewanella속 6%, Psychrobacter속 4%, Acinetobacter속 3% 및 나머지 Enterovibrio, Moraxella_g2속이 각각 1%를 차지했다. α-proteobactera강은 5속 5종으로 Brevundimonas속, Allorhizobium속, Pseudoceanicola속, Erythrobacter속 및 Methylobacterium속이 각각 1%로 나타났다. Firmicutes문 Bacilli강은 6속 10종으로 Bacillus속 5%가 가장 높았고 나머지 Terribacillus속, Paenibacillus속, Salinicoccus속, Staphylococcus속 및 Streptococcus속은 1%로 관찰됐다. Actinobacteria문 Actinobacteria강은 3속 3종으로 Janibacter속, Micrococcus속 및 Isoptericola속이 각각 1%를 차지했다.

Keywords

References

  1. Bairagi A, Sarkar Ghosh K, Sen SK, Ray AK. 2004. Evaluation of the nutritive value of Leucaena leucocephala leaf meal, inoculated with fish intestinal bacteria Bacillus subtilis and Bacillus circulans in formulated diets for rohu, Labeo rohita (Hamilton) fingerlings. Aquac. Res. 35: 436-446. https://doi.org/10.1111/j.1365-2109.2004.01028.x
  2. Chaucheyras-Durand F, Durand H. 2010. Probiotics in animal nutrition and health. Benef. Microbes. 1: 3-9. https://doi.org/10.3920/BM2008.1002
  3. Daly K, Kelly J, Moran AW, Bristow R, Young IS, Cossins AR, et al. 2018. Host selectively contributes to shaping intestinal microbiota of carnivorous and omnivorous fish. J. Gen. Appl. Microbiol. 65: 129-136.
  4. Deep K, Poddar A, Das SK. 2014. Photobacterium panuliri sp. nov., an alkalitolerant marine bacterium isolated from eggs of spiny lobster, Panulirus penicillatus from Andaman sea. Curr. Microbiol. 69: 660-668. https://doi.org/10.1007/s00284-014-0638-0
  5. Fang Y, Wang Y, Liu Z, Lu B, Dai H, Kan B, et al. 2017. Shewanella carassii sp. nov., isolated from surface swabs of crucian carp and faeces of a diarrhea patient. Int. J. Syst. Evol. Microbiol. 67: 5284-5289. https://doi.org/10.1099/ijsem.0.002511
  6. Gomez GD, Balcazr JL. 2008. A review on the interactions between gut microbiota and innate immunity of fish. FEMS Immunol. Med. Microbiol. 52: 145-154. https://doi.org/10.1111/j.1574-695X.2007.00343.x
  7. Eigelsbach HT, Downs CM. 1961. Prophylactic effectiveness of live and killed tularemia vaccines. J. Immunol. 87: 415-425.
  8. Hentschel U, Steinert M, Hacker J. 2000. Common molecular mechanisms of symbiosis and pathogenesis. Trends Microbiol. 8: 226-230. https://doi.org/10.1016/S0966-842X(00)01758-3
  9. Huang MM, Guo LL, Wu YH, Lai QL, Shao ZZ, Wang CS, et al. 2018. Pseudooceanicola lipolyticus sp. nov., a marine alphaproteobacterium, reclassification of Oceanicola flagellates as Pseudooceanicola flagellates comb. nov. and emended description of the genus Pseudooceanicola. Int. J. Syst. Evol. Microbiol. 68: 409-415. https://doi.org/10.1099/ijsem.0.002521
  10. Huang YR, Shiau CY, Chen HH, Huang BC. 2011. Isolation and characterization of acid and pepsin-solubilized collagens from the skin of ballon fish (Diodon holocanthus). Food. Hydrocoll. 25: 1507-1513. https://doi.org/10.1016/j.foodhyd.2011.02.011
  11. Kim HS, Kim HS, Jung MM, Lee JB. 2013. New record of dinoflagellates around Jeju Island. J. Ecol. Environ. 36: 273-291. https://doi.org/10.5141/ecoenv.2013.273
  12. Kim MJ, Han HS, Kim JS, Kim BY, Song CB. 2014. Species composition and bimonthly changes of fish community in the coastal waters of sagyeoi, Jeju Island. Han. Gug. Eoryu. Hag. Hoeji. 26: 212-221.
  13. Kim SW, Chung M, Park HS. 2015. Tropical fish species thriving in temperate korean waters. Mar. Biodivers. 45: 147-148. https://doi.org/10.1007/s12526-014-0247-y
  14. Krahenbuhl JL, Humphres RC, Henika PC. 1982. Effects of Propionibacterium acnes treatment on the course of Mycobacterium leprae infection in mice. Infect. Immun. 37: 183-188. https://doi.org/10.1128/IAI.37.1.183-188.1982
  15. Macian MC, Garay E, Grimont PAD, Pujalte MJ. 2004. Vibrio ponticus sp. nov., a neighbor of V. fluvialis-V. furnissii clade, isolated from Gilthead sea bream, mussels and seawater. Syst. Appl. Microbiol. 27: 535-540. https://doi.org/10.1078/0723202041748127
  16. Nayak SK. 2010. Role of gastrointestinal microbiota in fish. Aquac. Res. 41: 1553-1573. https://doi.org/10.1111/j.1365-2109.2010.02546.x
  17. Olsson JC, Westerdahl A, Conway PL, Kjelleberg S. 1992. Intestinal colonization potential of turbot (Scophthalmus maximus) and Dab (Limanda limanda)-associated bacteria with inhibitory effects against Vibrio anguillarum. Appl. Environ. Microbiol. 58: 551-556. https://doi.org/10.1128/AEM.58.2.551-556.1992
  18. Peces R, Gago E, Tejada F, Laures AS, Alvarez-Grande J. 1997. Relapsing bacteraemia due to Micrococcus luteus in a haemodialysis patient with a perm-cath catheter. Nephrol. Dial. Transplant. 12: 2428-2429. https://doi.org/10.1093/ndt/12.11.2428
  19. Sudh Rani P, Saini MK, Pinnaka AK, Kumar GS, Kumar S, Vemuluri VR, et al. 2019. Shewanella submarina sp. nov., a gammaproteobacterium isolated from marine water. Int. J. Syst. Evol. Microbiol. 69: 39-45. https://doi.org/10.1099/ijsem.0.003059
  20. Ray AK, Bairagi A, Sarkar-Ghosh K. 2007. Optimization of fermentation conditions for cellulose production by Bacillus subtilis CY5 and Bacillus circulans TP3 isolated from fish gut. Acta. Ichthyol. Piscat. 37: 47-53. https://doi.org/10.3750/AIP2007.37.1.07
  21. Sommer F, Anderson JM, Bharti R, Raes J, Rosenstiel P. 2017. The resilience of the intestinal microbiota influences health and disease. Nat. Rev. Microbiol. 15: 630-638. https://doi.org/10.1038/nrmicro.2017.58
  22. Stephens WZ, Burns AR, Stagaman K, Wong S, Rawls JF, Guillemin K, et al. 2016. The composition of the zebrafish intestinal microbial community varies across development. ISME J. 10: 644-654. https://doi.org/10.1038/ismej.2015.140
  23. Sugita H, Shibuya K, Hanada H, Deguchi Y. 1997. Antibacterial abilities of intestinal microflora of the river fish. Fish. Sci. 63: 378-383. https://doi.org/10.2331/fishsci.63.378
  24. Sugita H, Shibuya K, Shimooka H, Deguchi Y. 1996. Antibacterial abilities of intestinal bacteria in freshwater cultured fish. Aquaculture 145: 195-203. https://doi.org/10.1016/S0044-8486(96)01319-1
  25. Tarnecki AM, Burgos FA, Ray CL, Arias CR. 2017. Fish intestinal microbiome: diversity and symbiosis unraveled by metagenomics. J. Appl. Microbiol. 123: 2-17. https://doi.org/10.1111/jam.13415
  26. Thompson FL, Hoste B, Thompson CC, Goris J, Gomez-Gil B, Huys L, et al. 2002. Enterovibrio norvegicus gen. nov., sp. nov., isolated from the gut of turbot (Scophthalmus maximus) larvae: a new member of the family Vibrionaceae. Int. J. Syst. Evol. Microbiol. 52: 2015-2022. https://doi.org/10.1099/ijs.0.02315-0
  27. Thompson JR, Randa MA, Marcelino LA, Tomita-Mitchell A, Lim E, Polz MF. 2004. Diversity and dynamics of a north atlantic coastal Vibrio community. Appl. Environ. Microbiol. 70: 4103-4110. https://doi.org/10.1128/AEM.70.7.4103-4110.2004
  28. Williams BA, Verstegen MWA, Tamminaga S. 2001. Fermentation in the large intestine of single-stomached animals and its relationship to animal health. Nutr. Res. Rev. 14: 207-227. https://doi.org/10.1079/NRR200127
  29. Yang G, Bao B, Peatman E, Li H, Huang L, Ren D. 2007. Analysis of the composition of the bacterial community in puffer fish Takifugu obscurus. Aquaculture 262: 183-191. https://doi.org/10.1016/j.aquaculture.2006.11.031