DOI QR코드

DOI QR Code

흡착제를 이용한 침강 HNS 처리 및 현장적용 가능성 연구 - 현장 처리를 위한 활성탄소 활용 조건 검토 및 제안 -

Feasibility of Activated-Carbon Adsorbent to Sequester Sunken Hazardous and Noxious Substances (HNS)

  • Choi, Ki-young (Korea Institute of Ocean Science and Technology) ;
  • Kim, Chang-joon (Korea Institute of Ocean Science and Technology) ;
  • Kim, Hye-eun (Korea Institute of Ocean Science and Technology) ;
  • Jung, Jun-mo (Department of Oceanography, Pukyong National University) ;
  • Hwang, Ho-jin (Korea Research Institute of Ships & Ocean Engineering) ;
  • Lee, Moonjin (Korea Research Institute of Ships & Ocean Engineering)
  • 투고 : 2020.11.10
  • 심사 : 2020.12.28
  • 발행 : 2020.12.31

초록

본 연구에서는 활성탄소를 이용하여 해양환경으로 유출된 침강 HNS를 현장에서 대응하기 위한 기술 개발을 목적으로, 활용 가능한 활성탄소의 조건을 검토하고 예상 소요량을 산출하였다. 입자 크기별 7종의 활성탄소들을 대상으로 침강 속도를 측정하였고, 침강 HNS로 분류된 클로로포름(CHCl3)에 대한 흡착용량을 실험실 규모 실험(lab-scale test)으로 측정하였다. 또한 7종 활성탄소들에 대하여 유해물질함량과 용출 실험을 실시하여 용출된 유해물질 함량을 정량 분석하였다. 평균 침강속도(Mean particle-settling velocity)는 0.5~8 cm/sec의 범위로 8-20 mesh 경우를 제외하고 입자의 크기가 클수록 침강속도가 빨랐으며, 클로로포름에 대한 흡착효율은 대체로 입자가 작을수록 표면적이 넓어져 증가되었다. 또한 현장 투입 후 2차 오염가능성 확인을 위한 유해물질함량과 용출 실험 실험에서 >100 mesh의 활성탄소는 전함량분석결과가 아연(Zn)과 비소(As)가 수처리제기준보다 높고, 용출실험결과에서도 크롬(Cr), 아연(Zn), 비소(As)가 다른 활성탄소에 비해 높은 농도로 용출되었다. 흡착효율, 침강속도, 유해성분 용출량 등을 종합적으로 고려하여 현장 처리 적용 가능한 활성탄소는 20-60, 20-40, 2mm&down mesh 이었으며, 흡착용량을 최우선으로 판단하여 투입물량을 계산하면 최소 현장 투입 물량은 각각 0.82, 0.90, 1.28 ton/㎘ 이다.

We experimented with the particle-settling velocity and CHCl3 absorption efficiency of seven activated-carbon and analyzed seven heavy metal contents by elution for application to the field treatment of sunken HNS on the marine seabed. The mean particle-settling velocity was in the range 0.5-8 cm/s, except when the 8-20 mesh was used. The larger the HNS particle, the faster the particle-settling velocity was, and the CHCl3 absorption efficiency increased considerably owing to the larger surface area. In addition, the elution test results showed that the total Zn and As contents in >100-meshed activated carbon was higher than the contents criteria for the standard for water-treatment agents, and Cr, Zn, and As were released at higher concentrations than those released by other activated-carbon groups. Taken together, the CHCl3 absorption efficiency, settling velocity, and elution test results suggested that the 20-60, 20-40, and 2mm&down mesh activated-carbon adsorbents could be applied to the field treatment of HNSs and that the minimum required amount for field treatment were 0.82, 0.90, and 1.28 ton/㎘, respectively, as calculated based on the HNS-adsorption-capacity priority.

키워드

참고문헌

  1. Choi, Y., Y-M. Cho, D. Werner, and R. G. Luthy(2014), In Situ Sequestration of Hydrophobic Organic Contaminants in Sediments under Stagnant Contact with Activated Carbon. 2. Mass Transfer Modeling, Environmental Science & Technology, Vol. 48, No. 3, pp. 1843-1850. https://doi.org/10.1021/es404209v
  2. Chun, J. Y., C. K. Kim, and C. W. Ha(2019), A Study on the Improvement of National Marine Pollution Response Policy according to Change of Marine Pollution Incident Trend, Journal of the Korean Society for Marine Environment & Energy, Vol. 22, No. 1, pp. 57-65. https://doi.org/10.7846/JKOSMEE.2019.22.1.57
  3. Cornelissen, G.,, M. E. Krusa, G. D. Breedveld, E. Eek, A. M. P. Oen, H. P. H. Arp, C. Raymond, G. Samuelsson, J. E. Hedman, O. Stokland, and J. S. Gunnarsson(2011), Remediation of contaminated marine sediment using thin-layer capping with activated carbon-a field experiment in Trondheim Harbor, Norway, Environmental Science & Technology, Vol. 45, No. 14, pp. 6110-6116. https://doi.org/10.1021/es2011397
  4. Cunha, I., H. Oliveira, T. Neuparth, T. Torres, and M. M. Santos(2016), Fate, behaviour andweathering of priority HNS in the marine environment: An online tool, Marine Pollution Bulletin, Vol. 111, pp. 330-338. https://doi.org/10.1016/j.marpolbul.2016.06.090
  5. Harold, P. D., A. S. de Souza, P. Louchart, D. Russell, and H. Brunt(2014), Development of a Risk-based Prioritization Methodology to inform Public Health Emergency Planning and Preparedness in case of Accidental Spill at Sea of Hazardous and Noxious Substances (HNS), Environment International, Vol. 72, pp. 157-163. https://doi.org/10.1016/j.envint.2014.05.012
  6. IMO(2000), Protocol on Preparedness, Response and Co-operation to Pollution Incidents by Hazardous and Noxious Substances, pp. 3-24.
  7. ITOPF(2014), TIP 17: Response to marine chemical incidents, Technical information papers, pp. 1-16.
  8. Kim, Y. R., J. Y. Choi, M. H. Son, S. W. Oh, M. J. Lee, and S. J. Lee(2016), Prioritizing Noxious Liquid Substances (NLS) for Preparedness Against Potential Spill Incidents in Korean Coastal Waters, Journal of the Korean Society of Marine Environment & Safety, Vol. 22, No. 7, pp. 846-853. https://doi.org/10.7837/kosomes.2016.22.7.846
  9. Kim, Y. R., M. Lee, J. Y. Jung, T. W. Kim, and D. Kim(2019), Initial environmental risk assessment of hazardous and noxious substances (HNS) spill accidents to mitigate its damages, Marine Pollution Bulletin, Vol. 139, pp. 205-213. https://doi.org/10.1016/j.marpolbul.2018.12.044
  10. KMI(2018), Korea Maritime Institute, The statistics of the occurrence of maritime pollution, https://www.kmi.re.kr/web/contents/contentsView.do?rbsIdx=226 (retrieved Mar. 9. 2020).
  11. KMST(2020), Korean maritime safety tribunal, The statistics of the number of maritime accidents by registered vessels, https://www.kmst.go.kr/eng/main.do (retrieved Sep. 20. 2020).
  12. Lee, E. B., J. H. Yun, and S. T. Chung(2012), A Study on the Development of the Response Resource Model of Hazardous and Noxious Substances Based on the Risks of Marine Acidents in Korea, Journal of Navigation and Port Research, Vol. 36, No. 10, pp. 857-86. https://doi.org/10.5394/KINPR.2012.36.10.857
  13. Moran, M. J., J. S. Zogorski, and P. J. Squillace(2007), Chlorinated solvents in groundwater of the United States, Environmental Science & Technology, Vol. 41, No. 1, pp. 74-81. https://doi.org/10.1021/es061553y
  14. Roebers, A., T. Roncken, R. Hopman, C. L. de Ligny, B. G. Dekker, J. van der Laan, and J. C. Kruithof(1988), Activated Carbon as an Adsorbent for the Separation of Low-Molecular Alkyl Halides from Ground Water in the Production of Drinking-Water: I. An Accurate Method for the Determination of Adsorption Isotherms, and its Application to Virgin and Regenerated Activated Carbons, Adsorption Science and Technology, Vol. 5, No. 1, pp. 13-28. https://doi.org/10.1177/026361748800500103
  15. Rondina, D. J. G., D. V. Ymbong, M. J. M. Cadutdut, J. R. S. Nalasa, J. B. Paradero, V. I. F. Mabayo, and R. O. Arazo(2019), Utilization of a novel activated carbon adsorbent from press mud of sugarcane industry for the optimized removal of methyl orange dye in aqueous solution, Applied Water Science, Vol. 9, pp. 1-12, https://doi.org/10.1007/s13201-019-1063-0.
  16. Thompson, J. M., C-H. Hsieh, T. P. Hoelen, D. P. Weston, and R. G. Luthy(2016), Measuring and Modeling Organochlorine Pesticide Response to Activated Carbon Amendment in Tidal Sediment Mesocosms, Environmental Science & Technology Vol. 50, No. 9, pp. 4769-4777. https://doi.org/10.1021/acs.est.5b05669
  17. UNCTAD(2016), United Nations Conference on Trade and Development, Review of Maritime Transport 2016.
  18. Yoon, S. Y., J. Y. Yun, J. Y. Han, and S. H. Jung(2018), Risk Analysis of Transporting Hazardous Substances in Harbor Using Modeling Program, Journal of Ocean Engineering and Technology, Vol. 32, No. 4, pp. 272-278. https://doi.org/10.26748/KSOE.2018.6.32.4.272