DOI QR코드

DOI QR Code

해일표류물의 충돌에 의한 철근콘크리트 건축물의 응답특성에 관한 실험적 연구

Experimental Study on Response Characteristics of Reinforced Concrete Buildings Due to Waterborne Debris Impact Loads

  • 최호 (일본 시즈오카 이공과대학 건축학과)
  • Choi, Ho (Department of Architecture, Shizuoka Institute of Science and Technology)
  • 투고 : 2020.11.21
  • 심사 : 2020.11.24
  • 발행 : 2020.12.30

초록

본 연구에서는 해일표류선박의 충돌이 해일피난건물로 선정된 철근콘크리트 건축물의 안전성에 미치는 영향을 파악하기 위하여, 충돌속도, 선박의 질량 및 선박의 길이를 변수로 한 진자를 이용한 축소 충돌실험을 실시하여, 건축물의 응답에 영향을 미치는 최대 충돌력, 충돌시간, 충돌파형 형상, 반발계수 등에 대한 기본적인 물리량 변동추이를 상세히 평가하였다. 그 결과, 충돌파형 형상은 대부분의 실험결과에서 삼각형 분포가 나타났으나, 충돌실험체의 길이의 증가에 따라 사다리꼴에 가까워지는 것을 알 수 있었다. 이는 건축물의 응답에 영향을 미치는 충격량 (충돌력 파형의 면적)을 산정함에 있어 매우 중요한 결과이다. 또한 반발계수는 충돌속도의 대소에 관계없이 일정하나, 충돌체의 질량 및 길이에 의해 변화하며, 단위길이당 질량으로 정리하면 반발계수의 변동이 평가가능함을 알 수 있었다.

In this study, the small-scale collision experiments using a pendulum principle were carried out to evaluate the safety of the reinforced concrete building selected as a tsunami evacuation building due to the collision of the waterborne debris represented by ships. The experimental parameters were set as impact velocity, mass and length of the drifted ship. In this paper, the maximum impact force, impact duration, impact waveform and restitution coefficient affecting building response were investigated in detail. As a result, the impact force waveforms were distributed as a triangle in most of the experimental results, but became closer to a trapezoid as the length of the collision specimen increased. This is the very important result in calculating the momentum (impact waveform area) affecting building response, Furthermore, the restitution coefficients were constant regardless of the impact velocity, but they varied depending on the mass and length of the waterborne debris. However, the restitution coefficient for the mass per unit length of the waterborne debris can be evaluated.

키워드

참고문헌

  1. Arikawa, T., Ohtsubo, D., Nakano, F., Shimosako, K., Ishikawa, N. (2007). Large model tests of drifting container force due to surge front tsunami, Proceedings of Coastal Engineering, Japan Society of Civil Engineers, 54, 846-850.
  2. Asai, T., Nakano, Y., Tateno, T., Fukuyama, H., Fujima, K., Sugano, T., Haga, Y., Okada, T. (2012). Tsunami load evaluation based on field investigations of the 2011 great east Japan earthquake, Proceedings of the 15th World Conference on Earthquake Engineering(15 WCEE), Lisbon, Portugal.
  3. Naito, N., Maeda, K., Konno, H., Ushiwatari, Yiji, Suzuki, K., Kawase, R. (2015). The loading rate dependency of sand cushion focused on stress wave velocity using DEM, Journal of Japan Society of Civil Engineers, 71(2), I_557-I_566.
  4. Nakano, Y. (2014). Structural design requirements for tsunami evacuation buildings in Japan, Proceedings of 1st ACI/JCI Joint Seminar, Hawaii.
  5. NILIM/National Institute for Land and Infrastructure Management, Ministry of Land, Infrastructure, Transport and Tourism, Japan. (2012). Practical Guide on Requirement for Structural Design of Tsunami Evacuation Buildings, Technical Note of National Institute for Land and Infrastructure Management, 673, http://www.nilim.go.jp/lab/bcg/siryou/tnn/tnn0673pdf/ks0673.pdf.
  6. Shoji, K., Takabayashi, T. (1999). Effect of ship dimensions on calculation formula for bow collision strength, The Journal of Japan Institute of Navigation, 101, 201-209. https://doi.org/10.9749/jin.101.201