DOI QR코드

DOI QR Code

Performance and antifouling properties of PVDF/PVP and PSf membranes in MBR: A comparative study

  • Hazrati, Hossein (Faculty of Chemical Engineering, Sahand University of Technology) ;
  • Karimi, Naser (Faculty of Chemical Engineering, Sahand University of Technology) ;
  • Jafarzadeh, Yoones (Faculty of Chemical Engineering, Sahand University of Technology)
  • 투고 : 2019.04.03
  • 심사 : 2019.12.20
  • 발행 : 2020.03.25

초록

In this study, the performance and antifouling properties of polysulfone (PSf) and polyvinylidene fluoride/polyvinylpyrrolidone (PVDF/PVP) membranes in a membrane bioreactor (MBR) were investigated. The membranes were prepared via phase inversion method, and then characterized by a set of analyses including contact angle, porosity and water flux and applied in a lab-scale MBR system. Soluble microbial product (SMP), extracellular polymeric substance (EPS), FTIR, gel permission chromatography (GPC) and particle size distribution (PSD) analyses were also carried out for MBR system. The results showed that the MBR with PSf membrane had higher hydrophobic organic compounds which resulted in formation of larger flocs in MBR. However, in this MBR had high compressibility coefficient of cake layer was higher (n=0.91) compared to MBR with PVDF/PVP membrane (n=0.8); hence, the fouling was more profound. GPC analysis revealed that compounds with molecular weight lower than 2 kDa are more formed on PSf membrane more than PVDF/PVP membrane. The results of FTIR analysis confirmed the presence of polysaccharide and protein compounds on the cake layer of both membranes which was in good agreement with EPS analysis. In addition, the results showed that their concentration was higher for the cake on PSf membrane.

키워드

참고문헌

  1. Alsalhy, Q.F., Al-Ani, F.H., Al-Najar, A.E., Jabuk, S.I.A. (2018), "A study of the effect of embedding ZnO-NPs on PVC membrane performance use in actual hospital wastewater treatment by membrane bioreactor", Chem. Eng. P. P. Inten., 130, 262-274. https://doi.org/10.1016/j.cep.2018.06.019.
  2. Arabi, S., Nakhla, G. (2008), "Impact of protein/carbohydrate ratio in the feed wastewater on the membrane fouling in membrane bioreactors", J. Membr. Sci., 324(1-2), 142-150. https://doi.org/10.1016/j.memsci.2008.07.026.
  3. Behboudi, A., Jafarzadeh, Y., Yegani, R. (2016), "Preparation and characterization of TiO2 embedded PVC ultrafiltration membranes", Chem. Eng. Res. Des., 114, 96-107. https://doi.org/10.1016/j.cherd.2016.07.027.
  4. Behboudi, A., Jafarzadeh, Y., Yegani, R. (2017), "Polyvinyl chloride/polycarbonate blend ultrafiltration membranes for water treatment", J. Membr. Sci., 534, 18-24. https://doi.org/10.1016/j.memsci.2017.04.011.
  5. Behboudi, A., Jafarzadeh, Y., Yegani, R. (2018a), "Enhancement of antifouling and antibacterial properties of PVC hollow fiber ultrafiltration membranes using pristine and modified silver nanoparticles", J. Env. Chem. Eng., 6(2), 1764-1773. https://doi.org/10.1016/j.jece.2018.02.031.
  6. Behboudi, A., Jafarzadeh, Y., Yegani, R., (2018b), "Incorporation of silica grafted silver nanoparticles into polyvinyl chloride/polycarbonate hollow fiber membranes for pharmaceutical wastewater treatment", Chem. Eng. Res. Des., 135, 153-165. https://doi.org/10.1016/j.cherd.2018.03.019.
  7. Campo, R., Capodici, M., Di Bella, G., Torregrossa, M. (2017), "The role of EPS in the foaming and fouling for a MBR operated in intermittent aeration conditions", Biochem. Eng. J., 118, 41-52. https://doi.org/10.1016/j.bej.2016.11.012.
  8. Chang, I.-S., Kim, S.-N. (2005), "Wastewater treatment using membrane filtration-effect of biosolids concentration on cake resistance", Process Biochem., 40(3-4), 1307-1314. https://doi.org/10.1016/j.procbio.2004.06.019.
  9. Chang, I.-S., Lee, C.-H. (1998), "Membrane filtration characteristics in membrane-coupled activated sludge system- the effect of physiological states of activated sludge on membrane fouling", Desalination, 120(3), 221-233. https://doi.org/10.1016/S0011-9164(98)00220-3.
  10. Drews, A. (2010), "Membrane fouling in membrane bioreactors- characterisation, contradictions, cause and cures", J. Membr. Sci., 363(1-2), 1-28. https://doi.org/10.1016/j.memsci.2010.06.046.
  11. DuBois, M., Gilles, K.A., Hamilton, J.K., Rebers, P.t., Smith, F., (1956), "Colorimetric method for determination of sugars and related substances", Anal. Chem., 28(3), 350-356. https://doi.org/10.1021/ac60111a017.
  12. Hazrati, H., Jahanbakhshi, N., Rostamizadeh, M. (2018), "Fouling reduction in the membrane bioreactor using synthesized zeolite nano-adsorbents", J. Membr. Sci., 555, 455-462. https://doi.org/10.1016/j.memsci.2018.03.076.
  13. Hazrati, H., Shayegan, J., Mojtaba Seyedi, S. (2016), "The effect of HRT and carriers on the sludge specifications in MBR to remove VOCs from petrochemical wastewater", Desal. Wat. Treat., 57(46), 21730-21742. https://doi.org/10.1080/19443994.2015.1125800.
  14. Ji, J., Qiu, J., Wai, N., Wong, F.-S., Li, Y. (2010), "Influence of organic and inorganic flocculants on physical-chemical properties of biomass and membrane-fouling rate", Water Res., 44 (5), 1627-1635. https://doi.org/10.1016/j.watres.2009.11.013.
  15. Jiang, T., Kennedy, M.D., Schepper, V.D., Nam, S.-N., Nopens, I., Vanrolleghem, P.A., Amy, G. (2010), "Characterization of soluble microbial products and their fouling impacts in membrane bioreactors", Environ. Sci. Technol., 44(17), 6642-6648. https://doi.org/10.1021/es100442g.
  16. Jin, L., Ong, S.L., Ng, H.Y. (2010), "Comparison of fouling characteristics in different pore-sized submerged ceramic membrane bioreactors", Water Res., 44(20), 5907-5918. https://doi.org/10.1016/j.watres.2010.07.014.
  17. Jin, L., Ong, S.L., Ng, H.Y. (2013), "Fouling control mechanism by suspended biofilm carriers addition in submerged ceramic membrane bioreactors", J. Membr. Sci., 427, 250-258. https://doi.org/10.1016/j.memsci.2012.09.016.
  18. Kertesz, S. (2014), "Industrial dairy wastewater purification by shear-enhanced membrane filtration: The effects of vibration", Membr. Water. Treat., 5(2), 73-86. https://doi.org/10.12989/mwt.2014.5.2.073.
  19. Krzeminski, P., Leverette, L., Malamis, S., Katsou, E. (2017), "Membrane bioreactors - A review on recent developments in energy reduction, fouling control, novel configurations, LCA and market prospects", J. Membr. Sci., 527, 207-227. https://doi.org/10.1016/j.memsci.2016.12.010.
  20. Lee, T.H., Young, S. (2012), "Effects of membrane orientation on permeate flux performance in a submerged membrane bioreactor", Membr. Water. Treat., 3(3), 141-149. https://doi.org/10.12989/mwt.2012.3.3.141.
  21. Lin, H., Zhang, M., Wang, F., Meng, F., Liao, B.-Q., Hong, H., Chen, J., Gao, W. (2014), "A critical review of extracellular polymeric substances (EPSs) in membrane bioreactors: characteristics, roles in membrane fouling and control strategies", J. Membr. Sci., 460, 110-125. https://doi.org/10.1016/j.memsci.2014.02.034.
  22. Lu, X., Wang, X., Guo, L., Zhang, Q., Guo, X., Li, L. (2016), "Preparation of PU modified PVDF antifouling membrane and its hydrophilic performance", J. Membr. Sci., 520, 933-940. https://doi.org/10.1016/j.memsci.2016.08.018.
  23. Marbelia, L., Bilad, M.R., Piassecka, A., Jishna, P.S., Naik, P.V., Vankelecom, I.F. (2016), "Study of PVDF asymmetric membranes in a high-throughput membrane bioreactor (HT-MBR): Influence of phase inversion parameters and filtration performance", Sep. Purf. Technol., 162, 6-13. https://doi.org/10.1016/j.seppur.2016.02.008.
  24. Martin-Pascual, J., Reboleiro-Rivas, P., Munio, M.M., Gonzalez-Lopez, J., Poyatos, J.M. (2016), "Membrane fouling of a hybrid moving bed membrane bioreactor plant to treat real urban wastewater", Chem. Eng. P. P. Inten., 104, 112-119. https://doi.org/10.1016/j.cep.2016.02.014.
  25. Meng, F., Yang, F. (2007), "Fouling mechanisms of deflocculated sludge, normal sludge, and bulking sludge in membrane bioreactor", J. Membr. Sci., 305(1-2), 48-56. https://doi.org/10.1016/j.memsci.2007.07.038.
  26. Meng, F., Zhang, H., Yang, F., Li, Y., Xiao, J., Zhang, X. (2006), "Effect of filamentous bacteria on membrane fouling in submerged membrane bioreactor", J. Membr. Sci., 272(1-2), 161-168. https://doi.org/10.1016/j.memsci.2005.07.041.
  27. Meng, F., Zhang, S., Oh, Y., Zhou, Z., Shin, H.-S., Chae, S.-R. (2017), "Fouling in membrane bioreactors: An updated review", Water Res., 114, 151-180. https://doi.org/10.1016/j.watres.2017.02.006.
  28. Mirzavandi, A., Hazrati, H., Ebrahimi, S. (2019), "Investigation of influence of temperature and solid retention time on membrane fouling in MBR", Membr. Water. Treat., 10(2), 179-189. https://doi.org/10.12989/mwt.2019.10.2.179.
  29. Nam, A., Kweon, J., Ryu, J., Lade, H., Lee, C. (2015), "Reduction of biofouling using vanillin as a quorum sensing inhibitory agent in membrane bioreactors for wastewater treatment", Membr. Water. Treat., 6(3), 189-203. http://dx.doi.org/10.12989/mwt.2015.6.3.189.
  30. Qu, X., Cai, X., Zhang, M., Lin, H., Leihong, Z., Liao, B.-Q. (2018), "A facile method for simulating randomly rough membrane surface associated with interface behaviors", Appl. Surface Sci., 427, 915-921. https://doi.org/10.1016/j.apsusc.2017.08.013.
  31. Rosengerg, M., Gutnick, D., Rosengerg, E. (1980) "Adherence of bacteria to hydrocarbons: a simple method for measuring cellsurface hydrophobicity", FEMS Microbiology Lett., 9(1), 29- 33. https://doi.org/10.1111/j.1574-6968.1980.tb05599.x.
  32. Shariati, S.R.P., Bonakdarpour, B., Zare, N., Ashtiani, F.Z. (2011), "The effect of hydraulic retention time on the performance and fouling characteristics of membrane sequencing batch reactors used for the treatment of synthetic petroleum refinery wastewater", Bioresour. Technol., 102(17), 7692-7699. https://doi.org/10.1016/j.biortech.2011.05.065.
  33. Teng, J., Zhang, M., Leung, K.-T., Chen, J., Hong, H., Lin, H., Liao, B.-Q. (2019), "A unified thermodynamic mechanism underlying fouling behaviors of soluble microbial products (SMPs) in a membrane bioreactor", Water research, 149, 477-487. https://doi.org/10.1016/j.watres.2018.11.043.
  34. Tobino, T., Chen, J., Sawai, O., Nunoura, T., Yamamoto, K. (2016), "Inline thickener-MBR as a compact, energy efficient organic carbon removal and sludge production devise for municipal wastewater treatment", Chem Eng. P. P. Inten., 107, 177-184. https://doi.org/10.1016/j.cep.2015.11.010.
  35. Wang, Z., Wu, Z., Tang, S. (2009), "Extracellular polymeric substances (EPS) properties and their effects on membrane fouling in a submerged membrane bioreactor", Water Res., 43(9), 2504-2512. https://doi.org/10.1016/j.watres.2009.02.026.
  36. Yuniarto, A., Noor, Z.Z., Ujang, Z., Olsson, G., Aris, A., Hadibarata, T. (2013), "Bio-fouling reducers for improving the performance of an aerobic submerged membrane bioreactor treating palm oil mill effluent", Desalination, 316, 146-153. https://doi.org/10.1016/j.desal.2013.02.002.
  37. Zeng, K., Zhou, J., Cui, Z., Zhou, Y., Shi, C., Wang, X., Zhou, L., Ding, X., Wang, Z., Drioli, E. (2018), "Insight into fouling behavior of poly(vinylidene fluoride) (PVDF) hollow fiber membranes caused by dextran with different pore size distributions", Chin. J. Chem. Eng., 26(2), 268-277. https://doi.org/10.1016/j.cjche.2017.04.008.
  38. Zhang, D., Trzcinski, A.P., Kunacheva, C., Stuckey, D.C., Liu, Y., Tan, S.K., Ng, W.J. (2016), "Characterization of soluble microbial products (SMPs) in a membrane bioreactor (MBR) treating synthetic wastewater containing pharmaceutical compounds", Water Res., 102, 594-606. https://doi.org/10.1016/j.watres.2016.06.059.
  39. Zhang, D., Zhou, Y., Bugge, T.V., Mayanti, B., Yang, A., Poh, L.S., Gao, X., Majid, M.b.A., Ng, W.J. (2017), "Soluble microbial products (SMPs) in a sequencing batch reactor with novel cake filtration system", Chemosphere, 184, 1286-1297. https://doi.org/10.1016/j.chemosphere.2017.06.110.
  40. Zhang, X., Bishop, P.L., Kinkle, B.K. (1999), "Comparison of extraction methods for quantifying extracellular polymers in biofilms", Water Sci. Technol., 39(7), 211-218. https://doi.org/10.1016/j.cep.2018.06.019.
  41. Zhou, J., Li, W., Gu, J.-S., Yu, H.-Y. (2010), "Surface modification of polypropylene membrane to improve antifouling characteristics in a submerged membrane-bioreactor: Ar plasma treatment", Membr. Water. Treat., 1(1), 83-92. https://doi.org/10.12989/mwt.2010.1.1.083.