DOI QR코드

DOI QR Code

Vulnerability and seismic improvement of architectural heritage: the case of Palazzo Murena

  • Liberotti, Riccardo (Department of Civil and Environmental Engineering, University of Perugia) ;
  • Cluni, Federico (Department of Civil and Environmental Engineering, University of Perugia) ;
  • Gusella, Vittorio (Department of Civil and Environmental Engineering, University of Perugia)
  • Received : 2019.06.04
  • Accepted : 2019.12.27
  • Published : 2020.03.25

Abstract

The aim of the present contribution is to consider and underline the essential interactions among the historical knowledge, the seismic vulnerability assessment, the investigation experimental tools, the preservation of the architectural quality and the strengthening design in regard to architectural heritage conservation. These topics are argued in relation to Palazzo Murena in Perugia, designed in the eighteenth century by the famous Architect Luigi Vanvitelli, and currently headquarters of the city's University. Based on the surveys and the visual inspections, a preliminary a priori global analysis has been performed by means of the FME method. The obtained results permitted to plan an experimental tests campaign inclusive of structural health monitoring. The new achieved "knowledge" of the building allowed to refine the seismic safety assessment. In particular it was highlighted that the "mezzanine floor" can be a vulnerable element of the building with the collapse of its masonry walls. Preserving the architectural characteristics, a local reinforcement intervention is proposed for the above-mentioned level; this consists of the application of plaster with FRCM, assuring an adequate strength, without burden the masonry structure with additional weight, and therefore a decreasing of the seismic vulnerability. The necessity to consider, in this ongoing research, other local mechanisms is highlighted in the unfolding of the last part of work.

Keywords

Acknowledgement

Grant : Advanced mechanical modelling of new materials and structures for the solution of 2020 Horizon challenges

Authors gratefully acknowledge the support received from the Italian Ministry of University and Research, through the PRIN 2015 funding scheme (project 2015 JW9NJT - Advanced mechanical modelling of new materials and structures for the solution of 2020 Horizon challenges). The support received from the University of Perugia and the collaboration of its Technical Office, represented by L. Palma and B. Buonforte, are thanked.

References

  1. Adem, D. and Halil, S. (2012), "Seismic vulnerability and preservation of historical masonry monumental structures", Earthq. Struct., 3(1), 83-95. https://doi.org/10.12989/eas.2012.3.1.083.
  2. Alecci, V., Focacci, F., Rovero, L., Stipo, G. and de Stefano, M. (2016a), "Extrados strengthening of brick masonry arches with PBO-FRCM composites: Experimental and analytical investigations", Compos. Struct., 149, 184-196. https://doi.org/10.1016/j.compstruct.2016.04.030.
  3. Alecci, V., Focacci, F., Rovero, L., Stipo, G. and De Stefano, M. (2017), "Intrados strengthening of brick masonry arches with different FRCM composites: Experimental and analytical investigations", Compos. Struct., 176, 898-909. https://doi.org/10.1016/j.compstruct.2017.06.023.
  4. Alecci, V., Misseri, G., Rovero, L., De Stefano, M., Feo, L. and Luciano, R. (2016b), "Experimental investigation on masonry arches strengthened with PBO-FRCM composite", Composites Part B: Eng., 100, 228-239. https://doi.org/10.1016/j.compositesb.2016.05.063.
  5. Ascione, L., de Felice G. and De Santis, S. (2015), "A qualification method for externally bonded Fibre Reinforced Cementitious Matrix (FRCM) strengthening systems", Compos. Part B, 78, 497-506. https://doi.org/10.1016/j.compositesb.2015.03.079.
  6. Autuori, G., Cluni, F., Gusella, V. and Pucci, P. (2017) "Mathematical models for nonlocal elastic composite materials", Advan. Nonlin. Anal., 6(4), 355-382. https://doi.org/10.1515/anona-2016-0186.
  7. Bartoli, G., Chiarugi, A. and Gusella, V. (1996), "Monitoring systems on historic buildings: The Brunelleschi Dome", J. Struct. Eng., 122(6), 663-673. https://doi.org/10.1061/(ASCE)0733-9445(1996)122:6(663).
  8. Berto, L., Doria, A., Faccio, P., Saetta, A. and Talledo, D. (2017), "Vulnerability Analysis of Built Cultural Heritage: A Multidisciplinary Approach for Studying the Palladio's Tempietto Barbaro", Int. J. Arch. Heritage, 11(6). https://doi.org/10.1080/15583058.2017.1290853.
  9. Betti, M., Bartoli, G. and Orlando, M. (2010), "Evaluation study on structural fault of a Renaissance Italian palace", Eng. Struct., 32(7), 1801-1813. https://doi.org/10.1016/j.engstruct.2010.03.001.
  10. Betti, M., Orlando, M. and Vignoli A. (2011) "Static behaviour of an Italian Medieval Castle: damage assessment by numerical modelling", Comput. Struct., 89(21-22), 1956-1970. https://doi.org/10.1016/j.compstruc.2011.05.022
  11. Carozzi, F. G. and Poggi, C. (2015), "Mechanical properties and debonding strength of Fabric Reinforced Cementitious Matrix (FRCM) systems for masonry strengthening", Compos.: Part B, 70, 215-230. https://doi.org/10.1016/j.compositesb.2014.10.056.
  12. Carozzi, F.G., Milani, G., Poggi, C. (2014), "Mechanical properties and numerical modeling of Fabric Reinforced Cementitious Matrix (FRCM) systems for strengthening of masonry structures", Compos. Struct., 107, 711-725. https://doi.org/10.1016/j.compstruc.2011.05.022.
  13. Castellazzi, G., D'Altri, A.M., de Miranda, S. and Ubertini, F. (2017), "An innovative numerical modeling strategy for the structural analysis of historical monumental buildings", Eng. Struct., 132, 229-248. https://doi.org/10.1016/j.engstruct.2016.11.032.
  14. Castori, G., Borri, A., De Maria, A., Corradi, M. and Sisti, R. (2017), "Seismic vulnerability assessment of a monumental masonry building", Eng. Struct., 136, 454-465. https://doi.org/10.1016/j.engstruct.2017.01.035.
  15. Cattari, S., Degli Abbati, S., Ferretti, D., Lagomarsino S., Ottonelli, D. and Tralli, A. (2014) "Damage assessment of fortresses after the 2012 Emilia earthquake (Italy)", Bull. Earthq. Eng., 12(5), 2333-2365. https://doi.org/10.1016/j.engstruct.2017.01.035.
  16. Cattari, S., Resemini, S. and Lagomarsino S. (2008), "Modelling of vaults as equivalent diaphragms in 3D seismic analysis of masonry buildings", Struct. Anal. Historic Construction, Proceedings of the VI International Conference on Structural Analysis of Historic Construction SAHC08, Bath, U.K., July.
  17. Cavalagli, N. and Gusella, V. (2015a), "Structural Investigation of 18 century ogival masonry domes: From Carlo Fontana to Bernardo Vittone", Int. J. Architec. Heritage, 9(3), 265-276. https://doi.org/10.1080/15583058.2013.771294.
  18. Cavalagli, N. and Gusella, V. (2015b), "Dome of the Basilica of Santa Maria degli Angeli in Assisi: Static and dynamic assessment", Int. J. Arch. Heritage, 9(2), 157-175. https://doi.org/10.1080/15583058.2014.951799.
  19. Cavalagli, N., Comanducci, G. and Ubertini, F. (2018), "Earthquake-induced damage detection in a monumental masonry bell-tower using long-term dynamic monitoring data", J. Earthq. Eng., 22, 96-119. https://doi.org/10.1080/13632469.2017.1323048.
  20. Circ. No7 (2019), Circolare del Ministero delle infrastrutture e dei trasporti 21 gennaio 2019, n. 7 C.S.LL.PP., Istruzioni per l'applicazione dell' di cui al decreto ministeriale 17 gennaio 2018. , Supplemento ordinario alla "Gazzetta Ufficiale" n. 35 del 11 febbraio 2019 - Serie generale, Ministero delle Infrastrutture e dei Trasporti; Roma, Italy.
  21. Clementi, F., Gazzani, V., Poiani, M. and Lenci, S. (2016), "Assesment of seismic behaviour of heritage masonry buildings using numerical modelling", J. Build. Eng., 8, 29-47. https://doi.org/10.1016/j.jobe.2016.09.005.
  22. CNR-DT 215/2018 (2018), Istruzioni per la Progettazione, l'Esecuzione ed il Controllo di Interventi di Consolidamento Statico mediante l'utilizzo di Compositi Fibrorinforzati a matrice inorganica, Consiglio Nazionale delle Ricerche; Roma, Italy.
  23. D'Ambra, C., Lignola, G.P., Prota, A., Sacco, E. and Fabbrocino, F. (2018), "Experimental performance of FRCM retrofit on out-of-plane behaviour of clay brick walls", Compos. Part B, 148, 198-206. https://doi.org/10.1016/j.compositesb.2018.04.062.
  24. De Santis, S., Felice, Gianmarco, F. and Roscini, F. (2019). "Retrofitting of masonry vaults by basalt textile-reinforced mortar overlays", Int. J. Arch.. Heritage, 7, 1-18. https://doi.org/10.1080/15583058.2019.1597947.
  25. Degli Abbati, S., D'Altri, A.M., Ottonelli, D., Castellazzi, G., Cattari, S., de Miranda, S. and Lagomarsino S. (2019), "Seismic assessment of interacting structural units in complex historic masonry constructions by nonlinear static analyses", Comput. Struct., 213, 51-71. https://doi.org/10.1016/j.compstruc.2018.12.001.
  26. Formisano A. and Marzo. A. (2017), "Simplified and refined methods for seismic vulnerability assessment and retrofitting of an Italian cultural heritage masonry building", Comput. Struct., 180, 13-26. https://doi.org/10.1016/j.compstruc.2016.07.005
  27. Fortunato, G., Funari M.F. and Lonetti P. (2017), "Survey and seismic vulnerability assessment of the Baptistery of San Giovanni in Tumba (Italy)". J. Cultural Heritage, 26, 64-78. https://doi.org/10.1016/j.compstruc.2016.07.005.
  28. Gambarotta, L. and Lagomarsino, S. (1997), "Damage models for the seismic response of brick masonry shear walls. Part II: the continuum model and its applications", Earthq. Eng. Struct. Dyn., 26, 441-462. https://doi.org/10.1002/(SICI)1096-9845(199704)26:4<423::AID-EQE650>3.0.CO;2-%23.
  29. Gianfrotta, A. (2000), Manoscritti Di Luigi Vanvitelli Nell'Archivio Della Reggia Di Caserta 1752-1773, PUBBLICAZIONI DEGLI ARCHIVI DI STATO FONTI XXX, Citta di Castello (PG), Italy.
  30. Gioffre, M., Cluni, F., and Gusella, V. (2008). "Performance evaluation of monumental bridges: Testing and monitoring 'Ponte delle Torri' in Spoleto", Struct. Infrassruct. Eng., 4(2), 95-106. https://doi.org/10.1080/15732470601155300.
  31. Giresini, L., Sassu, M., Burenweg, C., Alecci, V. and De Stefano, M.D. (2017), "Vault macro-element with equivalent trusses in global seismic analyses", Earthq. Struct., 12, 409-423. https://doi.org/10.12989/eas.2017.12.4.409.
  32. Grohmann, A. (1981), Perugia, Edizioni Laterza, Bari, Italy.
  33. Hadzima-Nyarko, M., Ademovic, N., Kalman Sipos, T. and Pavic, G. (2018), "Strengthening techniques for masonry structures of cultural heritage according to recent Croatian provisions", Earthq. Struct., 15, 473-485. https://doi.org/10.12989/eas.2018.15.5.473.
  34. Kimia (2019), Interventi-strutturali-resine-tessuti-pultrusi/frcm; Kimia S.p.a., P.te Felcino (Perugia), Italy. www.kimia.it
  35. Lagomarsino, S., Galasco, A. and Penna A. (2007) "Nonlinear macro-element dynamic analysis of masonry buildings", Proceedings Of The Thematic Conference On Computational Methods In Structural Dynamics And Earthquake Engineering, Crete, Grece, June.
  36. Lagomarsino, S., Penna, A., Galasco, A. and Cattari, S. (2013), "TREMURI program: An equivalent frame model for the nonlinear seismic analysis of masonry buildings", Eng. Struct., 56, 1787-1799. https://doi.org/10.1016/j.engstruct.2013.08.002.
  37. Lignola, G.P., Di Ludovico, M., Prota, A., Aiello, M.A. and Varum, H. (2018), "Design rules for in-plane shear strengthening of masonry with FRCM", 9th International Conference on FRP Composites in Civil Engineering CICE 2018, Paris, France, July.
  38. Lourenco, P.B., Oliveira, D.V., Leite, J.C., Ingham J.M., Modena, C. and da Porto, F. (2013), "Simplified indexes for the seismic assessment of masonry buildings: International database and validation", Eng. Fail. Anal., 34, 508-605. https://doi.org/10.1016/j.engfailanal.2013.02.014.
  39. Meireles, H., Bento, R., Cattari, S. and Lagomarsino S. (2014) "Seismic assessment and retrofitting of Pombalino buildings by pushover analyses", Earthq. Struct., 7(1). https://doi.org/10.12989/eas.2014.7.1.057.
  40. NTC (2018), Decreto Ministeriale 14 Gennaio 2018, Aggiornamento delle , Supplemento ordinario alla "Gazzetta Ufficiale, n. 42 del 20 febbraio 2018 - Serie generale, Ministero delle Infrastrutture e dei Trasporti; Roma, Italy.
  41. Pagnini, L.C., Vincente, R., Lagomarsino, S. and Varum H. (2011) "A mechanical model for the seismic vulnerability assessment of old masonry buildings", Earthq. Struct., 2(1), 25-42. https://doi.org/10.12989/eas.2011.2.1.025.
  42. Panto, B., Giresini, L., Sassu, M. and Calio, I. (2017), "Non-linear modeling of masonry churches through a discrete macro-element approach", Earthq. Struct., 12, 223-236. https://doi.org/10.12989/eas.2017.12.2.223.
  43. Pardalopoulos, S.I., Pantazopoulo, S.J., and Ignatakis, C.E. (2016), "Practical seismic assessment of unreinforced masonry historical buildings", Earthq. Struct., 11, 195-215. https://doi.org/10.12989/eas.2016.11.2.195.
  44. Ponte, M., Bento, R. and Daniel Vaz, S. (2019), "A Multi-Disciplinary Approach to the Seismic Assessment of the National Palace of Sintra", Int. J. Architect. Heritage, 1-22. https://doi.org/10.1080/15583058.2019.1648587.
  45. Rota, M., Penna, A. and Menges, G. (2014). "A framework for the seismic assessment of existing masonry buildings accounting for different sources of uncertainty", Earthq. Eng. Struct. Dyn., 43 (7), 1045-1066. https://doi.org/10.1002/eqe.2386.
  46. Rovida A., Locati M., Camassi R., Lolli B. and Gasperini, P. (2016). "CPTI15, the 2015 version of the Parametric Catalogue of Italian Earthquakes", Istituto Nazionale di Geofisica e Vulcanologia. http://doi.org/10.6092/INGV.IT-CPTI15.
  47. Sejnoha, J., Sejnoha, M., Zeman, J., Sykora, J. and Vorel, J. (2008), "A mesoscopic study on historic masonry", Struct. Eng. Mech., 30 (1), 99-117. https://doi.org/10.12989/sem.2008.30.1.099.
  48. Seker, S., B., Cakir, F., Dogangun, A. and Uysal, H. (2012), "Investigation of the structural performance of a masonry domed mosque by experimental tests and numerical analysis", Earthq. Struct., 6(4), 335-350. https://doi.org/10.129r89/eas.2014.6.4.335. https://doi.org/10.12989/eas.2014.6.4.335
  49. STA DATA (2018), Rinforzi strutturali; S.T.A. DATA s.r.l., Torino, Italy. www.stadata.com
  50. Tondelli, M., Rota, M., Penna, A. and Menges, G. (2012), "Evaluation of Uncertainties in the Seismic Assessment of Existing Masonry Buildings", J. Earthq. Eng., 16(1), 36-64. https://doi.org/10.1007/s10518-014-9652-7.
  51. Valente, M. and Milani, G. (2019), "Damage assessment and collapse investigation of three historical masonry palaces under seismic actions", Eng. Fail. Anal., 98, 10-37. https://doi.org/10.1016/j.engfailanal.2019.01.066.

Cited by

  1. Seismic Vulnerability of Sub-Structures: Vantitelli’s Modulus in Murena Palace vol.10, pp.9, 2020, https://doi.org/10.3390/buildings10090164