DOI QR코드

DOI QR Code

Wind pressures on a large span canopy roof

  • Rizzo, Fabio (Department of Engineering and Geology, University "G. d'Annunzio" di Chieti-Pescara) ;
  • Sepe, Vincenzo (Department of Engineering and Geology, University "G. d'Annunzio" di Chieti-Pescara) ;
  • Ricciardelli, Francesco (Department of Engineering, University of Campania "Luigi Vanvitelli") ;
  • Avossa, Alberto Maria (Department of Engineering, University of Campania "Luigi Vanvitelli")
  • Received : 2019.04.23
  • Accepted : 2020.01.05
  • Published : 2020.03.25

Abstract

Based on wind tunnel tests, this paper investigates the aerodynamic behavior of a large span canopy roof with elliptical plan and hyperbolic paraboloid shape. The statistics of pressure coefficients and the peak factor distributions are calculated for the top and bottom faces of the roof, and the Gaussian or non-Gaussian characteristics of the pressure time-histories in different areas of the roof are discussed. The cross-correlation of pressures at different positions on the roof, and between the top and bottom faces is also investigated. Combination factors are also evaluated to take into account the extreme values of net loads, relevant to the structural design of canopies.

Keywords

Acknowledgement

Prof. Piero D'Asdia (University "G. d'Annunzio" of Chieti-Pescara, Italy) is acknowledged for his support and guidance in the testing phase. Dr. Sara Giangreco is also acknowledged for her collaboration to the design of the canopy model and to the experimental campaign. Prof. Michele Barbato of the University of California Davis (USA) is acknowledged for some valuable discussion about non-Gaussian processes.

References

  1. AS-NZS 1170-2 (2011), Structural design actions - Part 2: Wind actions [By Authority of New Zeland Structure Verification Method B1/Vm1].
  2. ASCE (2010a), ASCE 7-10: Minimum Design Loads for Buildings and Other Structures. American Society of Civil Engineers (ASCE), Reston, U.S.A.
  3. ASCE (2010b), ASCE/SEI 19-16: Structural Applications of Steel Cables for Buildings. American Society of Civil Engineers (ASCE), Reston, U.S.A.
  4. ASCE (2010c), ASCE/SEI 55-10: Tensile Membrane Structures. American Society of Civil Engineers (ASCE), Reston, U.S.A.
  5. Barbato, M., Petrini, F., Unnikrishnan, V.U. and Ciampoli, M. (2013), "Performance-based hurricane engineering (PBHE) framework", Struct. Saf., 45, 24-35. https://doi.org/10.1016/j.strusafe.2013.07.002.
  6. Beccarelli, P. (2015), "Biaxial Testing for Fabrics and Foils Optimizing devices and procedures", Springer International Publishing. Berlin. Germany. https://link.springer.com/book/10.1007%2F978-3-319-02228-4.
  7. Biagini, P., Borri, C. and Facchini, L. (2007), "Wind response of large roofs of stadiums and arena", J. Wind Eng. Ind. Aerod., 95(9-11), 871-887. https://doi.org/10.1016/j.jweia.2007.01.025.
  8. Birchall, M. (2015), "Recent developments in architectural fabric structures in Europe: The design and construction of the London 2012 Olympic Stadium and its context in the European fabric structures market", Fabric Struct. Architect., 773-817. https://doi.org/10.1016/B978-1-78242-233-4.00022-X.
  9. CEN, 2005. EN 13782: Temporary Structures-Tent-Safety. Comite Europeen de Normalization (CEN), Brussels (Belgium).
  10. Chilton, J. (2010), "Tensile structures - textiles for architecture and design", Textiles, Polymers Compos. Build., 229-257. https://doi.org/10.1533/9780845699994.2.229.
  11. Ciampoli, M. and Petrini, F. (2012), "Performance-based Aeolian risk assessment and reduction for tall buildings", Probabilist. Eng. Mech., 28, 75-84. https://doi.org/10.1016/j.probengmech.2011.08.013.
  12. Colliers J., Mollaert M., Degrootec J. and De Laet L. (2019), "Prototyping of thin shell wind tunnel models to facilitate experimental wind load analysis on curved canopy structures", J. Wind Eng. Ind. Aerod., 188, 308-322. https://doi.org/10.1016/j.jweia.2019.03.004.
  13. Cook, N.J. and Mayne, J.R. (1979), "A novel working approach to the assessment of wind loads for equivalent static design", J. Wind Eng. Ind. Aerod., 4(2), 149-164. https://doi.org/10.1016/0167-6105(79)90043-6.
  14. Cook, N.J. and Mayne, J.R. (1980), "A refined working approach to the assessment of wind loads for equivalent static design", J. Wind Eng. Ind. Aerod., 6(1-2), 125-137. https://doi.org/10.1016/0167-6105(80)90026-4.
  15. D'Asdia, P., Rizzo, F. and Sepe, V. (2006), "Study of a tension structure shape and of the interaction of wind loads: Pescara stadium roof", 9th National Conference of Wind Engineering, Pescara, Italy (in Italian).
  16. Davenport, A.G. (1964), "Note on the distribution of the largest value of a random function with application to gust loading", Proceedings of the Institution of Civil Engineers, 28(2), 187-196. https://doi.org/10.1680/iicep.1964.10112
  17. Daw, D.J. and Davenport, A.G. (1989), "Aerodynamic damping and stiffness of a semi-circular roof in turbulent wind", J. Wind Eng. Ind. Aerod., 32(1-2), 83-92. https://doi.org/10.1016/0167-6105(89)90019-6.
  18. Elashkar, I. and Novak, M. (1983), "Wind tunnel studies of cable roofs", J. Wind Eng. Ind. Aerod., 13(1-3), 407-419. https://doi.org/10.1016/0167-6105(83)90160-5.
  19. Eswaran M., Verma R.K. and Reddy G.R. (2016). "Wind-induced loads and integrity assessment of hyperboloid reflector of solar power plants", Alexandria Eng. J., 55(2), 837-850. https://doi.org/10.1016/j.aej.2016.02.005.
  20. Foster, B. and Mollaert, M. (2004), "European design guide for tensile surface structures", TensiNet, Brussels, Belgium.
  21. Giaralis, A. and Petrini, F. (2017), "Wind-induced vibration mitigation in tall buildings using the tuned mass-damper-inerter", J. Struct. Eng. ASCE, 143(9), 04017127. https://doi.org/10.1061/(ASCE)ST.1943-541X.0001863.
  22. Ginger, J.D. and Letchford, C.W. (1994), "Wind loads on planar canopy roofs, part 2: fluctuating pressure distributions and correlations", J. Wind Eng. Ind. Aerod., 51(3), 353-370. https://doi.org/10.1016/0167-6105(94)90068-X.
  23. Holmes, J.D. and Wood, G.S. (2001), "The determination of structural wind loads for the roofs of several venues for the 2000 olympics", ASCE Structures Congress, Washington D.C., May.
  24. Huang, M.F., Lou, W., Chan, C.M., Lin, N. and Pan, X. (2013). "Peak distributions and peak factors of wind-induced pressure processes on tall buildings", J. Eng. Mech., 139(12), 1744-1756. https://doi.org/10.1061/(ASCE)EM.1943-7889.0000616.
  25. Kareem, A. (1997), "Correlation structure of random pressure fields", J. Wind Eng. Ind. Aerod., 69, 507-516. https://doi.org/10.1016/S0167-6105(97)00181-5.
  26. Kasperski, M. and Niemann, H-J. (1992), "The load-response-correlation method - a general method of estimating unfavourable wind load distributions for linear and nonlinear structural behaviour", J. Wind Eng. Ind. Aerod., 43(1-3), 1753-1763. https://doi.org/10.1016/0167-6105(92)90588-2.
  27. Ke, S., Yu, W. and Ge, Y. (2018), "Wind load characteristics and action mechanism on internal and external surfaces of super-large cooling towers under wind-rain combined effects", Mathematica. Problems Eng., 2018, 1-22. https://doi.org/10.1155/2018/2921709.
  28. Kumar, K.S. and Stathopoulos, T., (2000), "Wind loads on low building roofs: a stochastic perspective", J. Struct. Eng., 126(8), 944-956. https://doi.org/10.1061/(ASCE)0733-9445(2000)126:8(944).
  29. Kwon, D. and Kareem, A. (2011), "Peak factors for non-gaussian load effects revisited", J. Struct. Eng., 137(12), 1611-1619. https://doi.org/10.1061/(ASCE)ST.1943-541X.0000412.
  30. Lazzari, M, Majowiecki, M, Vitaliani, R.V. and Saetta, A.V. (2001), "Nonlinear F.E. analysis of Montreal olympic stadium roof under natural loading conditions", Eng. Struct., 31(1), 16-31. https://doi.org/10.1016/j.engstruct.2008.07.010.
  31. Lazzari, M., Saetta, A.V. and Vitaliani, R.V. (2001), "Non-linear dynamic analysis of cable-suspended structures subjected to wind actions", Comput., Struct., 79(9), 953-969. https://doi.org/10.1016/S0045-7949(00)00187-5.
  32. Letchford, C.W., Row, A., Vitale A. and Wolbers, J. (2000), "Mean wind loads on porous canopy roofs", J. Wind Eng. Ind. Aerod., 84(2), 197-213. https://doi.org/10.1016/S0167-6105(99)00103-8.
  33. Majowiecki, M. (2004), Tensostrutture: Progetto e Controllo. Edizioni Crea, Milan, Italy (in Italian).
  34. Massey, F.J. (1951), "The Kolmogorov-Smirnov test for goodness of fit", J. Am. Stat. Assoc., 46(253), 68-78. https://doi.org/10.1080/01621459.1951.10500769
  35. Nakamura, O., Tamura, Y., Miyashita, K. and Itoh, M. (1994), "A case study of wind pressure and wind-induced vibration of a large span open-type roof", J. Wind Eng. Ind. Aerod., 52, 237-248. https://doi.org/10.1016/0167-6105(94)90050-7.
  36. Natalini, B., Marighetti, J.O. and Natalini, M.B. (2002), "Wind tunnel modelling of mean pressures on planar canopy roof", J. Wind Eng. Ind. Aerod., 90(4-5), 427-439. https://doi.org/10.1016/S0167-6105(01)00205-7.
  37. Natalini, M.B., Morel, C. and Natalini, B. (2013), "Mean loads on vaulted canopy roofs", J. Wind Eng. Ind. Aerod., 119, 102-113. https://doi.org/10.1016/j.jweia.2013.05.001.
  38. Rizzo, F., Giangreco, S., D'Asdia, P. and Sepe V. (2005), "Design of a tension structure to cover the Adriatico stadium of Pescara", XX CTA, Ischia, Italy, (in Italian).
  39. Rizzo, F. and Sepe, V. (2015), "Static loads to simulate dynamic effects of wind on hyperbolic paraboloid roofs with square plan", J. Wind Eng. Ind. Aerod., 137, 46-57. https://doi.org/10.1016/j.jweia.2014.11.012.
  40. Rizzo, F. and Ricciardelli, F. (2017), "Design approach of wind load for Hyperbolic paraboloid roof with circular and elliptical plan", Eng. Struct., 139, 153-169. https://doi.org/10.1016/j.engstruct.2017.02.035
  41. Rizzo, F., Barbato, M. and Sepe, V. (2018), "Peak factor statistics of wind effects for hyperbolic paraboloid roofs", Eng. Struct., 173, 313-330. https://doi.org/10.1016/j.engstruct.2018.06.106.
  42. Sahini, D. (2004), "Wind tunnel blockage corrections: a computational study", Master Thesis, Texas Tech University, Texas, U.S.A.
  43. Takeda, F., Yoshino, T. and Uematsu, Y. (2014), "Design wind force coefficients for hyperbolic paraboloid free roofs", J. Phys. Sci. Appli., 4(1), 1-19.
  44. Uematsu, Y., Iizumi, E. and Stathopoulos, T. (2007), "Wind force coefficients for designing free-standing canopy roofs", J. Wind Eng. Ind. Aerod., 95(9-11), 1486-1510. https://doi.org/10.1016/j.jweia.2007.02.015.
  45. Uematsu, Y., Stathopoulos, T. and Iizumi, E. (2008), "Wind loads on free-standing canopy roofs: part 1 local wind pressures", J. Wind Eng. Ind. Aerod., 96(6-7), 1015-1028. https://doi.org/10.1016/j.jweia.2007.06.047.
  46. Uematsu, Y., Miyamoto Y. and Gavansky, E. (2014), "Wind loading on a hyperbolic paraboloid free roof", J. Civil Eng. Architect., 8(10), 1233-1242. http://DOI:10.17265/1934-7359/2014.10.004.
  47. Uematsu, Y., Miyamoto, Y. and Gavansky, E. (2015), "Effect of porosity on the wind loads on a hyperbolic paraboloid canopy roof", J. Civil Eng. Architect., 9(6), 715-726. http://10.17265/1934-7359/2015.06.009.
  48. Vassilopoulou, I. and Gantes, C. J. (2010), "Vibration modes and natural frequencies of saddle form cable nets", Comput. Struct., 88(1-2), 105-119. https://doi.org/10.1016/j.compstruc.2009.07.002.
  49. Vassilopoulou, I. and Gantes, C.J. (2011), "Nonlinear dynamic behavior of saddle form cable nets under uniform harmonic load", Eng. Struct., 33(10), 2762-2771. https://doi.org/10.1016/j.engstruct.2011.06.001.
  50. Vassilopoulou, I. and Gantes, C.J. (2012), "Nonlinear dynamic phenomena in a SDOF model of cable net", Arch. Appl. Mech., 82(10-11), 1689-1703. https://doi.org/10.1007/s00419-012-0660-2.

Cited by

  1. Fluid-structure interaction of a tensile fabric structure subjected to different wind speeds vol.31, pp.6, 2020, https://doi.org/10.12989/was.2020.31.6.533
  2. Simulation and Analysis of Wind Pressure Coefficient of Landslide-Type Long-Span Roof Structure vol.2021, 2020, https://doi.org/10.1155/2021/8846568