Acknowledgement
Supported by : American University of Sharjah
The study presented in the paper was financially supported via the faculty research grants (FRG17-R-030 and EN6001) from the American University of Sharjah.
References
- Bukala, J., Damaziak, K., Karimi, H.R. and Malachowski, J. (2016), "Aero-elastic coupled numerical analysis of small wind turbine - generator modelling", Wind Struct., 23(6), 577-594. https://doi.org/10.12989/was.2016.23.6.577.
- Carta, J.A., Gonzalez, J., Cabrera, P. and Subiela, V.J. (2015), "Preliminary experimental analysis of a small-scale prototype SWRO desalination plant, designed for continuous adjustment of its energy consumption to the widely varying power generated by a stand-alone wind turbine", Appl. Energy, 137, 222-239. https://doi.org/10.1016/j.apenergy.2014.09.093.
- Castagnetti, D. and Radi, E. (2018), "A piezoelectric based energy harvester with dynamic magnification: modelling, design and experimental assessment", Meccanica, 53(11-12), 2725-2742. https://doi.org/10.1007/s11012-018-0860-0
- Costa Rocha, P.A., Carneiro de Aroujo, J.W., Pontes Lima, R.J., Vieira da Silva, M.E., de Andrade, C.F. and Carneiro, F.O.M. (2018), "The effects of blade pitch angle on the performance of small-scale wind turbine in urban environments", Energy, 148, 169-178. https://doi.org/10.1016/j.energy.2018.01.096.
- De Broe, Drouilhet A.M. and Gevorgian, V. (1999), "A peak power tracker for small wind turbines in battery charging applications", IEEE T. Energy Conver., 14(4), 1630-1635. https://doi.org/10.1109/60.815116.
- Du, B., Cuala, M., Lei, L. and Zeng P. (2019), "Experimental investigation of the performance and wake effect of a small-scale wind turbine in a wind tunnel", Energy, 166, 819-833. https://doi.org/10.1016/j.energy.2018.10.103.
- Erturk, A. and Inman D.J. (2011), Piezoelectric Energy Harvesting, John Wiley and Sons. United Kingdom.
- Hirahara, H., Hossain, M.Z., Kawahashi, M. and Nonomura, Y. (2005), "Testing basic performance of a very small wind turbine designed for multi-purposes', Renew. Energy, 30(8), 1279-1297. https://doi.org/10.1016/j.renene.2004.10.009.
- Howey, D., Bansal, A. and Holmes, A. (2011), "Design and performance of a centimeter-scale shrouded wind turbine for energy harvesting", Smart Mater. Struct., 20(8), 085021. https://doi.org/10.1088/0964-1726/20/8/085021.
- Kishore, R.A., Courdron, T. and Priya, S. (2013), "Small-scale wind energy portable turbine (SWEPT)", J. Wind Eng. Ind. Aerod., 116, 21-31. https://doi.org/10.1016/j.jweia.2013.01.010.
- Kishore, R.A. and Priya, S. (2013), "Design and experimental verification of a high efficiency small wind energy portable turbine (SWEPT)", J. Wind Eng. Ind. Aerod., 118, 12-19. https://doi.org/10.1016/j.jweia.2013.04.009.
- Morshed, K.N., Rahman, M., Molina, G. and Ahmed, M. (2013), "Wind tunnel testing and numerical simulation on aerodynamic performance of a three-bladed Savonius wind turbine", Int. J. Energy Environ. Eng., 4(1), 4-18. https://doi.org/10.1186/2251-6832-4-18.
- Ottman, G.K., Hofman, H.F., Bhatt, A.C. and Lesieutre, G.A. (2002), "Adaptive piezoelectric energy harvesting circuit for wireless remote power supply", IEEE T. Power Electr., 17(5), 669-676. https://doi.org/10.1109/TPEL.2002.802194.
- Park, J.W., Jung, H.J., Jo, H. and Spencer, B.F. (2012), "Feasibility study of micro-wind turbines for powering wireless sensors on a cable-stayed bridge", Energies, 5, 3450-3464. https://doi.org/10.3390/en5093450.
- Perez, M., Boisseau, S., Gasnier, P., Willemin, J., Geisler, M. and Reboud, J.L. (2016), "A cm scale electret-based electrostatic wind turbine for low-speed energy harvesting applications", Smart Mater. Struct., 25(4), 045015. https://doi.org/10.1088/0964-1726/25/4/045015.
- Priya, S., Chen, C.T., Fye, D. and Zahnd, J. (2005), "Piezoelectric windmill: A novel solution to remote sensing", Jpn. J. Appl. Phys., 44(3), 104-107. https://doi.org/10.1143/JJAP.44.L104.
- Ragheb, M. and Ragheb, M.A. (2011), "Wind turbines theory - the betz equation and optimal rotor tip speed ratio, Fundamental Advan. Top. Wind Power", 1(1), 19-38.
- Roy, S. and Saha, U.K. (2015), "Wind tunnel experiments of a newly developed two-bladed Savonius-style wind turbine", Appl. Energy, 137, 117-125. https://doi.org/10.1016/j.apenergy.2014.10.022.
- ScienceKit (2018), Wind Power V3: Renewable Energy Science Kit; Thames and Cosmos, USA https://www.thamesandkosmos.com/index.php/8-to-10/wind power-v3.
- Shah, H., Mathew, S. and Lim C.M. (2014), "A novel low reynolds number airfoil design for small horizontal axis wind turbines", Wind Eng., 38(4), 377-391. https://doi.org/10.1260%2F0309-524X.38.4.377. https://doi.org/10.1260/0309-524X.38.4.377
- Sodano, H.A., Inman, D.J. and Park, G. (2005), "Comparison of piezoelectric energy harvesting devices for recharging batteries", J. Intel. Mater. Sys. Struct., 16(10), 799-807. https://doi.org/10.1177/1045389X05056681.
- Syta, A., Bowen, C.R., Rysak, A. and Litak, G. (2015), "Experimental analysis of the dynamical response of energy harvesting devices based on bistable laminated plates", Meccanica, 50(8), 1961-1970. https://doi.org/10.1007/s11012-015-0140-1.
- Tarhan, C. and Yilmaz, I. (2019), "Numerical and experimental investigations of 14 different small wind turbine airfoils for 3 different Reynolds number conditions", Wind Struct., 28(3), 144-153. https://doi.org/10.12989/was.2019.28.3.141.
- Xu, F., Yuan, F.G., Liu, L., Hu, J. and Qiu, Y. (2013), "Performance prediction and demonstration of a miniature horizontal axis wind turbine", J. Energy Eng., 139(3), 143-152. https://doi.org/10.1061/(ASCE)EY.1943-7897.0000125.
- Xu, F.J., Yuan, F.G., Hu, J.Z. and Qiu, Y.P. (2014), "Miniature horizontal axis wind turbine system for multipurpose application", Energy, 75, 216-224. https://doi.org/10.1016/j.energy.2014.07.046.
- Zakariya, M., Pereira, D.A. and Hajj, M.R. (2015), "Experimental investigation and performance modeling of centimeter-scale micro-wind turbine energy harvesters", J. Wind Eng. Ind. Aerod., 147, 58-65. https://doi.org/10.1016/j.jweia.2015.09.009.
- Zhou, M., Fu, Y., Xu, Z., Al-Furjan, M.S. and Wang, W. (2018), "Modeling and preliminary analysis of piezoelectric energy harvester based on cylindrical tube conveying fluctuating fluid", Meccanica, 53(9), 2379-2392. https://doi.org/10.1007/s11012-018-0826-2
Cited by
- Comparison of aerodynamic performances of various airfoils from different airfoil families using CFD vol.32, pp.3, 2020, https://doi.org/10.12989/was.2021.32.3.239