DOI QR코드

DOI QR Code

MERRA-2 재분석자료를 활용한 적도 대류권계면층의 오존 수송 및 계절변동성 분석

Analysis of the Ozone Transport and Seasonal Variability in the Tropical Tropopause Layer using MERRA-2 Reanalysis Data

  • 류호선 (공주대학교 대기과학과) ;
  • 김주완 (공주대학교 대기과학과)
  • Ryu, Hosun (Department of Atmospheric Science, Kongju National University) ;
  • Kim, Joowan (Department of Atmospheric Science, Kongju National University)
  • 투고 : 2020.02.04
  • 심사 : 2020.03.04
  • 발행 : 2020.03.31

초록

MERRA-2 ozone and atmospheric data are utilized to test the usefulness of reanalysis-based tracer transport analysis for ozone in the tropical tropopause layer (TTL). Transport and mixing processes related to the seasonal variation of TTL ozone are examined using the tracer transport equation based on the transformed Eulerian mean, and the results are compared to previously proposed values from model analyses. The analysis shows that the seasonal variability of TTL ozone is mainly determined by two processes: vertical mean transport and horizontal eddy mixing of ozone, with different contributions in the Northern and Southern Hemispheres. The horizontal eddy mixing process explains the major portion of the seasonal cycle in the northern TTL, while the vertical mean transport dominates in the southern TTL. The Asian summer monsoon likely contributes to this observed difference. The ozone variability and related processes in MERRA-2 reanalysis show qualitatively similar features with satellite- and model-based analyses, and it provides advantages of fine-scale analyses. However, it still shows significant quantitative biases in ozone budget analysis.

키워드

참고문헌

  1. Abalos, M., W. J. Randel, and E. Serrano, 2012: Variability in upwelling across the tropical tropopause and correlations with tracers in the lower stratosphere. Atmos. Chem. Phys., 12, 18817-18851, doi:10.5194/acp-12-11505-2012.
  2. Abalos, M., W. J. Randel, D. E. Kinnison, and E. Serrano, 2013: Quantifying tracer transport in the tropical lower stratosphere using WACCM. Atmos. Chem. Phys., 13, 10591-10607, doi:10.5194/acp-13-10591-2013.
  3. Andrews, D. G., C. B. Leovy, and J. R. Holton, 1987: Middle atmosphere dynamics (Vol. 40). Academic press, 354-361.
  4. Birner, T., and E. J. Charlesworth, 2017: On the relative importance of radiative and dynamical heating for tropical tropopause temperatures. J. Geophys. Res. Atmos., 122, 6782-6797, doi:0.1002/2016JD026445.
  5. Brewer, A. W., 1949: Evidence for a world circulation provided by the measurements of helium and water vapour distribution in the stratosphere. Q. J. Roy. Meteor. Soc., 75, 351-363. https://doi.org/10.1002/qj.49707532603
  6. Butchart, N., 2014: The Brewer-Dobson circulation. Rev. Geophys., 52, 157-184. https://doi.org/10.1002/2013RG000448
  7. Das, S. S., K. V. Suneeth, M. Venkat Ratnam, I. A. Girach, and S. K. Das, 2019: Upper tropospheric ozone transport from the sub-tropics to tropics over the Indian region during Asian summer monsoon. Climate Dyn., 52, 4567-4581, doi:10.1007/s00382-018-4418-6.
  8. Dobson, G. M. B., 1956: Origin and distribution of the polyatomic molecules in the atmosphere. P. Roy. Soc. A.-Math. Phy., 236, 187-193.
  9. Folkins, I., M. Loewenstein, J. Podolske, S. J. Oltmans, and M. Proffit, 1999: A barrier to vertical mixing at 14 km in the tropics: Evidence from ozonesondes and aircraft measurements. J. Geophys. Res. Atmos., 104, 22095-22102.
  10. Folkins, I., C. Braun, A. M. Thompson, and J. Witte, 2002: Tropical ozone as an indicator of deep convection. J. Geophys. Res. Atmos., 107, ACH 13-1-ACH 13-10.
  11. Forster, P. M. de F., and K. P. Shine, 2002: Assessing the climate impact of trends in stratospheric water vapor. Geophys. Res. Lett., 29, 10-1-10-4.
  12. Forster, P. M. de F., and Coauthours, 2007: Changes in atmospheric constituents and in radiative forcing. Chapter 2. In S. Solomon, Eds., Climate Change 2007: The Physical Science Basis. Contribution of Working Group I to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge University Press, 137-153.
  13. Fueglistaler, S., and P. H. Haynes, 2005: Control of interannual and longer-term variability of stratospheric water vapor. J. Geophys. Res. Atmos., 110, D24108.
  14. Fueglistaler, S., A. E. Dessler, T. J. Dunkerton, I. Folkins, Q. Fu, and P. W. Mote, 2009: Tropical tropopause layer. Rev. Geophys., 47, RG1004. https://doi.org/10.1029/2008rg000267
  15. Garny, H., and W. J. Randel, 2013: Dynamic variability of the Asian monsoon anticyclone observed in potential vorticity and correlations with tracer distributions. J. Geophys. Res. Atmos., 118, 13421-13433, doi:10.1002/2013JD020908.
  16. Gelaro, R., and Coauthors, 2017: The modern-era retrospective analysis for research and applications, version 2 (MERRA-2). J. Climate, 30, 5419-5454, doi:10.1175/JCLI-D-16-0758.1.
  17. Gettelman, A., and P. M. de F. Forster, 2002: A climatology of the tropical tropopause layer. J. Meteor. Soc. Japan. Ser. II, 80, 911-924.
  18. Gettelman, A., P. Hoor, L. L. Pan, W. J. Randel, M. I. Hegglin, and T. Birner, 2011: The extratropical upper troposphere and lower stratosphere. Reviews of Geophysics, 49, RG3003, doi:10.1029/2011RG000355.
  19. GMAO, 2015: MERRA-2 inst3_3d_asm_Np: 3d,3-Hourly, Instantaneous, Pressure-Level, Assimilation, Assimilated Meteorological Fields V5.12.4. Global Modeling and Assimilation Office, Goddard Earth Sciences Data and Information Services Center (GES DISC), doi:10.5067/QBZ6MG944HW0.
  20. Haynes, P. H., M. E. McIntyre, T. G. Shepherd, C. J. Marks, and K. P. Shine, 1991: On the "downward control" of extratropical diabatic circulations by eddy-induced mean zonal forces. J. Atmos. Sci., 48, 651-678. https://doi.org/10.1175/1520-0469(1991)048<0651:OTCOED>2.0.CO;2
  21. Holton, J. R., P. H. Haynes, M. E. McIntyre, A. R. Douglass, R. B. Rood, and L. Pfister, 1995: Stratospheretroposphere exchange. Rev. Geophys., 33, 403-439. https://doi.org/10.1029/95RG02097
  22. Jensen, E., and L. Pfister, 2004: Transport and freeze-drying in the tropical tropopause layer. J. Geophys. Res. Atmos., 109, D02207.
  23. Kim, J., K. M. Grise, and S.-W. Son, 2013: Thermal characteristics of the cold-point tropopause region in CMIP5 models. J. Geophys. Res. Atmos., 118, 8827-8841, doi:10.1002/jgrd.50649.
  24. Kim, J., W. J. Randel, T. Birner, and M. Abalos, 2016: Spectrum of wave forcing associated with the annual cycle of upwelling at the tropical tropopause. J. Atmos. Sci., 73, 855-868, doi:10.1175/JAS-D-15-0096.1.
  25. Konopka, P., J.-U. Grooss, F. Ploger, and R. Muller, 2009: Annual cycle of horizontal in-mixing into the lower tropical stratosphere. J. Geophys. Res. Atmos., 114, D19111.
  26. Konopka, P., J.-U. Grooss, G. Gunther, F. Ploeger, R. Pommrich, R. Muller, and N. Livesey, 2010: Annual cycle of ozone at and above the tropical tropopause: observations versus simulations with the Chemical Lagrangian Model of the Stratosphere (CLaMS). Atmos. Chem. Phys., 10, 121-132, doi:10.5194/acp-10-121-2010.
  27. Ming, A., A. C. Maycock, P. Hitchcock, and P. H. Haynes, 2017: The radiative role of ozone and water vapour in the annual temperature cycle in the tropical tropopause layer. Atmos. Chem. Phys., 17, 5677-5701, doi:10.5194/acp-17-5677-2017.
  28. Monks, P. S., 2000: A review of the observations and origins of the spring ozone maximum. Atmos. Environ., 34, 3545-3561. https://doi.org/10.1016/S1352-2310(00)00129-1
  29. Oh, J., S.-W. Son, K. Williams, D. Walters, J. Kim, M. Willett, P. Earnshaw, A. Bushell, Y. Kim, and J. Kim, 2018: Ozone sensitivity of tropical upper-troposphere and stratosphere temperature in the MetOffice Unified Model. Q. J. Roy. Meteor. Soc., 144, 2001-2009, doi:10.1002/qj.3346.
  30. Pan, L. L., S. B. Honomichl, D. E. Kinnison, M. Abalos, W. J. Randel, J. W. Bergman, and J. Bian, 2016: Transport of chemical tracers from the boundary layer to stratosphere associated with the dynamics of the Asian summer monsoon. J. Geophys. Res. Atmos., 121, 14159-14174, doi:10.1002/2016JD025616.
  31. Plumb, R. A., and J. Eluszkiewicz, 1999: The Brewer-Dobson circulation: Dynamics of the tropical upwelling. J. Atmos. Sci., 56, 868-890. https://doi.org/10.1175/1520-0469(1999)056<0868:TBDCDO>2.0.CO;2
  32. Randel, W. J., and I. M. Held, 1991: Phase speed spectra of transient eddy fluxes and critical layer absorption. J. Atmos. Sci., 48, 688-697. https://doi.org/10.1175/1520-0469(1991)048<0688:PSSOTE>2.0.CO;2
  33. Randel, W. J., and E. J. Jensen, 2013: Physical processes in the tropical tropopause layer and their roles in a changing climate. Nature Geosci., 6, 169-176. https://doi.org/10.1038/ngeo1733
  34. Randel, W. J., and M. Park, 2019: Diagnosing observed stratospheric water vapor relationships to the cold point tropical tropopause. J. Geophys. Res. Atmos., 124, 7018-7033, doi:10.1029/2019JD030648.
  35. Randel, W. J., F. Wu, S. J. Oltmans, K. Rosenlof, and G. E. Nedoluha, 2004: Interannual changes of stratospheric water vapor and correlations with tropical tropopause temperatures. J. Atmos. Sci., 61, 2133-2148. https://doi.org/10.1175/1520-0469(2004)061<2133:ICOSWV>2.0.CO;2
  36. Randel, W. J., M. Park, F. Wu, and N. Livesey, 2007: A large annual cycle in ozone above the tropical tropopause linked to the Brewer-Dobson circulation. J. Atmos. Sci., 64, 4479-4488. https://doi.org/10.1175/2007JAS2409.1
  37. Randel, W. J., M. Park, L. Emmons, D. Kinnison, P. Bernath, K. A. Walker, C. Boone, and H. Pumphery, 2010: Asian monsoon transport of pollution to the stratosphere. Science, 328, 611-613. https://doi.org/10.1126/science.1182274
  38. Solomon, S., K. H. Rosenlof, R. W. Portmann, J. S. Daniel, S. M. Davis, T. J. Sanford, and G.-K. Plattner, 2010: Contributions of stratospheric water vapor to decadal changes in the rate of global warming. Science, 327, 1219-1223, doi:10.1126/science.1182488.
  39. Stohl, A., and Coauthors, 2003: Stratosphere-troposphere exchange: A review, and what we have learned from STACCATO. J. Geophys. Res. Atmos., 108, 8516.
  40. Stolarski, R. S., D. W. Waugh, L. Wang, L. D. Oman, A. R. Douglass, and P. A. Newman, 2014: Seasonal variation of ozone in the tropical lower stratosphere: Southern tropics are different from northern tropics. J. Geophys. Res. Atmos., 119, 6196-6206, doi:10.1002/2013JD021294.
  41. Tegtmeier, S., and Coauthors, 2020: Temperature and tropopause characteristics from reanalyses data in the tropical tropopause layer. Atmos. Chem. Phys., 20, 753-770, doi:10.5194/acp-20-753-2020.
  42. Thompson, A. M., and Coauthors, 2003: Southern Hemisphere Additional Ozonesondes (SHADOZ) 1998-2000 tropical ozone climatology 1. Comparison with Total Ozone Mapping Spectrometer (TOMS) and groundbased measurements. J. Geophys. Res., 108, 8238, doi:10.1029/2001JD000967.
  43. Thompson, A. M., and Coauthors, 2017: First reprocessing of Southern Hemisphere Additional Ozonesondes (SHADOZ) ozone profiles (1998-2016): 2. Comparisons with satellites and ground-based instruments. J. Geophys. Res. Atmos., 122, 13000-13025, doi:10.1002/2017JD027406.
  44. Vomel, H., and Coauthors, 2002: Balloon-borne observations of water vapor and ozone in the tropical upper troposphere and lower stratosphere. J. Geophys. Res. Atmos., 107, ACL 8-1-ACL 8-16.
  45. Wang, B., and Z. Fan, 1999: Choice of South Asian summer monsoon indices. Bull. Amer. Meteor. Soc., 80, 629-638. https://doi.org/10.1175/1520-0477(1999)080<0629:COSASM>2.0.CO;2
  46. Wargan, K., G. Labow, S. Frith, S. Pawson, N. Livesey, and G. Partyka, 2017: Evaluation of the Ozone Fields in NASA's MERRA-2 Reanalysis. J. Climate, 30, 2961-2988, doi:10.1175/JCLI-D-16-0699.1.