DOI QR코드

DOI QR Code

현업 국지모델기반 2018년 여름철 기상 1호 특별 고층관측자료의 관측 민감도 실험

Observing Sensitivity Experiment Based on Convective Scale Model for Upper-air Observation Data on GISANG 1 (KMA Research Vessel) in Summer 2018

  • 최다영 (기상청 수치모델링센터 수치자료응용과) ;
  • 황윤정 (기상청 수치모델링센터 수치자료응용과) ;
  • 이용희 (기상청 수치모델링센터 수치자료응용과)
  • Choi, Dayoung (Numerical Modeling Center, Korea Meteorological Administration) ;
  • Hwang, Yoonjeong (Numerical Modeling Center, Korea Meteorological Administration) ;
  • Lee, Yong Hee (Numerical Modeling Center, Korea Meteorological Administration)
  • 투고 : 2019.09.26
  • 심사 : 2020.01.26
  • 발행 : 2020.03.31

초록

KMA performed the special observation program to provide information about severe weather and to monitor typhoon PRAPIROON using the ship which called the Gisang 1 from 29 June 2018 to 4 July 2018 (UTC). For this period, upper-air was observed 21 times with 6 hour intervals using rawinsonde in the Gisang 1. We investigated the impact of upper-air observation data from the Gisang 1 on the performance of the operational convective scale model (we called LDAPS). We conducted two experiments that used all observation data including upper-air observation data from the Gisang 1 (OPER) and without it (EXPR). For a typhoon PRAPIROON case, track forecast error of OPER was lower than EXPR until forecast 24 hours. The intensity forecast error of OPER for minimum sea level pressure was lower than EXPR until forecast 12 hours. The intensity forecast error of OPER for maximum wind speed was mostly lower than EXPR until forecast 30 hours. OPER showed good performance for typhoon forecast compared with EXPR at the early lead time. Two precipitation cases occurred in the south of the Korean peninsula due to the impact of Changma on 1 July and typhoon on 3 July. The location of main precipitation band predicted from OPER was closer to observations. As assimilating upper-air data observed in the Gisang 1 to model, it showed positive results in typhoon and precipitation cases.

키워드

참고문헌

  1. Best, M. J., and Coauthors, 2011: The Joint UK Land Environment Simulator (JULES), model description - Part 1: Energy and water fluxes. Geosci. Model Dev., 4, 677-699, doi:10.5194/gmd-4-677-2011.
  2. Braun, S. A., and W.-K. Tao, 2000: Sensitivity of high-resolution simulations of hurricane Bob (1991) to planetary boundary layer parameterizations. Mon. Wea. Rev., 128, 3941-3961. https://doi.org/10.1175/1520-0493(2000)129<3941:sohrso>2.0.co;2
  3. Choi, H.-W., S.-H. Won, K.-H. Kim, Y.-H. Kim, and C.-H. Cho, 2014: A study on observing system experiment using special upper-air observations in summer 2014. Proc. of the Autumn Meeting of KMS, Jeju, Korea, Korean Meteorological Society, 122-123 (in Korean).
  4. Choi, H.-W., Y.-J. Hwang, K.-H. Kim, K.-M. Cho, and S.-W. Joo, 2015: A study on sensitivity experiment using upper-air observations in summer case in 2015. Proc. of the Autumn Meeting of KMS, Seoul, Korea, Korean Meteorological Society, 286-287 (in Korean).
  5. Edwards, J. M., and A. Slingo, 1996: Studies with a flexible new radiation code. I: Choosing a configuration for a large-scale model. Q. J. Roy. Meteor. Soc., 122, 689-719. https://doi.org/10.1002/qj.49712253107
  6. Ha, K.-J., S.-K. Park, and K.-Y. Kim, 2003: Interannual variability in summer precipitation around the Korean peninsula and its associated east Asian summer circulation. Kor. J. Atmos. Sci., 39, 575-586 (in Korean with English abstract).
  7. Hwang, Y.-J., J.-C. Ha, Y.-H. Kim, K.-H. Kim, E.-H. Jeon, and D.-E. Chang, 2011: Observing system experiments using KLAPS and 3DVAR for the upper-air observations over the south and west sea during ProbeX-2009. Atmosphere, 21, 1-16 (in Korean with English abstract). https://doi.org/10.14191/ATMOS.2011.21.1.001
  8. Islam, T., P. K. Srivastava, M. A. Rico-Ramirez, Q. Dai, M. Gupta, and S. K. Singh, 2015: Tracking a tropical cyclone through WRF-ARW simulation and sensitivity of model physics. Nat. Hazards, 76, 1473-1495, doi:10.1007/s11069-014-1494-8.
  9. Jeon, E.-H., Y.-H. Kim, D.-E. Chang, H.-S. Lee, and S.-W. Lee, 2009: The impact of T-PARC 2008 dropsonde observations on typhoon track forecasting of typhoon Silako (0813) and Rose (0815). Proc. of the Autumn Meeting of KMS, Daegu, Korea, Korean Meteorological Society, 12-13 (in Korean).
  10. Kim, Y.-H., E.-H. Jeon, D.-E. Chang, H.-S. Lee, and J.-I. Park, 2010: The impact of T-PARC 2008 dropsonde observations on typhoon track forecasting. Asia-Pac. J. Atmos. Sci., 46, 287-303, doi:10.1007/s13143-010-1011-2.
  11. Knaff, J. A., and R. M. Zehr, 2007: Reexamination of tropical cyclone wind-pressure relationships. Wea. Forecasting, 22, 71-88. https://doi.org/10.1175/WAF965.1
  12. Lee, J.-S., J.-K. Shim, J.-C. Ha, and K.-Y. Chung, 2013: A study on sensitivity analysis of regional model using upper-air observations: precipitation cases on July 2013. Proc. of the Autumn Meeting of KMS, Gwangju, Korea, Korean Meteorological Society, 438-439 (in Korean).
  13. Lee, Y.-H., H.-Y. Lee, K.-H. Lee, J.-S. Lee, J.-Y. Jang, and S.-W. Ju, 2016: The improvement of prediction skill for precipitation based on the convective scale model in the summer 2016. Proc. of the Autumn Meeting of KMS, Busan, Korea, Korean Meteorological Society, 297-298 (in Korean).
  14. Li, X., and Z. Pu, 2008: Sensitivity of numerical simulation of early rapid intensification of hurricane Emily (2005) to cloud microphysical and planetary boundary layer parameterizations. Mon. Wea. Rev., 136, 4819-4838.
  15. Lock, A. P., A. R. Brown, M. R. Bush, G. M. Martin, and R. N. B. Smith, 2000: A new boundary layer mixing scheme. Part I: Scheme description and single-column model tests. Mon. Wea. Rev., 128, 3187-3199. https://doi.org/10.1175/1520-0493(2000)128<3187:ANBLMS>2.0.CO;2
  16. Lorenc, A. C., and F. Rawlins, 2005: Why does 4D-Var beat 3D-Var? Q. J. Roy. Meteor. Soc., 131, 3247-3257. https://doi.org/10.1256/qj.05.85
  17. Short, C. J., and J. Petch, 2018: How well can the met office unified model forecast tropical cyclones in the western north pacific? Wea. Forecasting, 33, 185-200, doi:10.1175/WAF-D-17-0069.1.
  18. Smith, R. K., and G. L. Thomsen, 2010: Dependence of tropical-cyclone intensification on the boundary-layer representation in a numerical model. Q. J. Roy. Meteor. Soc., 136, 1671-1685, doi:10.1002/qj.687.
  19. Staniforth, A., and N. Wood, 2008: Aspects of the dynamical core of a nonhydrostatic, deep-atmosphere, unified weather and climate-prediction model. J. Comput. Phys., 227, 3445-3464. https://doi.org/10.1016/j.jcp.2006.11.009
  20. Tao, W.-K., J. J. Shi, S. S. Chen, S. Lang, P.-L. Lin, S.-Y. Hong, C. Peters-Lidard, and A. Hou, 2011: The impact of microphysical schemes on hurricane intensity and track. Asia-Pac. J. Atmos. Sci., 47, 1-16, doi:10.1007/s13143-011-1001-z.
  21. Webster, S., A. R. Brown, D. R. Cameron, and C. P. Jones, 2003: Improvements to the representation of orography in the Met Office Unified Model. Q. J. Roy. Meteor. Soc., 129, 1989-2010. https://doi.org/10.1256/qj.02.133
  22. Weston, P., 2014: Assimilating IASI data into the UKV. Met Office SA Tech. Memo., 15, 30 pp.
  23. Wilson, D. R., and S. P. Ballard, 1999: A microphysically based precipitation scheme for the UK Meteorological Office Unified Model. Q. J. Roy. Meteor. Soc., 125, 1607-1636. https://doi.org/10.1002/qj.49712555707