References
- Cichosz, P., Data Mining Algorithms, Wiley, 2015.
- Huang, X., Shi, L., Pelckmans, K., and Suykens, J., Asymmetric ν-tube support vector regression, Computational Statistics and Data Analysis, 2014, Vol. 77, pp. 371-382. https://doi.org/10.1016/j.csda.2014.03.016
- Jung, H. and Kim, J.W., A Machine Learning Approach for Mechanical Motor Fault Diagnosis, Journal of Society of Korea Industrial and Systems Engineering, 2017, Vol. 40, No. 1, pp. 57-64. https://doi.org/10.11627/jkise.2017.40.1.057
- Kang, T.H., Kim, B.S., Lee, S.H., Song, J.Y., Kang, J.H., Development of a Web-based Analysis Program for Reliability Assessment of Machine Tools, Proceedings of 2004 The Korean Society of Machine Tool Engineers Fall Conference, 2004, pp. 369-374.
- Kim, K.W., Keum, C.S., and Chung, K.S., An Evaluation of the Suitability of Data Mining Algorithms for Smart-Home Intelligent-Service Platforms, Journal of Society of Korea Industrial and Systems Enginering, 2017, Vol. 40, No. 2, pp. 68-77. https://doi.org/10.11627/jkise.2017.40.2.068
- Kong, D., Chen, Y., and Li, N., Gaussian process regression for tool wear prediction, Mechanical Systems and Signal Processing, 2018, Vol. 104, pp. 556-574. https://doi.org/10.1016/j.ymssp.2017.11.021
- Kong, J.S., Optimization of the Tool Life Prediction Using Genetic Algorithm, Journal of the Korea Academia-Industrial Cooperation Society, 2018, Vol. 19, No. 11, pp. 338-343. https://doi.org/10.5762/KAIS.2018.19.11.338
- Lee, D.J. and Choi, S.J., Generalized Support Vector Quantile Regression, Journal of Society of Korea Industrial and Systems Engineering, 2020, Vol. 43, No. 4, p. 107-115. https://doi.org/10.11627/jkise.2020.43.4.107
- Ozel, T. and Karpat, Y., Predictive modeling of surface roughness and tool wear in hard turning using regression and neural networks, International Journal of Machine Tools and Manufacture, 2005, Vol. 45, No. 4-5, pp. 467-479. https://doi.org/10.1016/j.ijmachtools.2004.09.007
- Pandiyan, V., Caesarendra, W., Tjahjowidodo T., and Tan, H.H., In-process tool condition monitoring in compliant abrasive belt grinding process using support vector machine and genetic algorithm, Journal of Manufacturing Processes, 2018, Vol. 31, pp. 199-213. https://doi.org/10.1016/j.jmapro.2017.11.014
- Scholkopf, B., Smola, A.J., Williamson, R.C., and Bartlett, P.L., New support vector algorithms, Neural Comput., 2000, Vol. 12, No. 5, pp. 1207-1245. https://doi.org/10.1162/089976600300015565
- Taylor, F.W., On the Art of Cutting Metals, Trans. ASME, 1906, Vol. 28, pp. 310-350.
- Wu, D., Jennins, C., Terpenny, J., Gao, R.X., and Kumara, S., A Comparative Study on Machine Learning Algorithms for Smart Manufacturing : Tool Wear Prediction Using Random Forests, Journal of Manu. Sci. and Engineering, 2017, Vol. 139, No. 7, pp. 1-10.
- Xu, G., Zhou, H., and Chen, J., CNC internal data based incremental cost-sensitive support vector machine method for tool breakage monitoring in end milling, Engineering Applications of Artificial Intelligence, 2018, Vol. 74, pp. 90-103. https://doi.org/10.1016/j.engappai.2018.05.007