DOI QR코드

DOI QR Code

Leaf Gas-exchange Model Parameterization and Simulation for Estimating Photosynthesis in Onion

양파 광합성 예측을 위한 잎의 기체교환모형 모수 추정

  • Lee, Seong Eun (Research Institute of Climate Change and Agriculture, NIHHS, RDA) ;
  • Moon, Kyung Hwan (Research Institute of Climate Change and Agriculture, NIHHS, RDA) ;
  • Shin, Min Ji (Research Institute of Climate Change and Agriculture, NIHHS, RDA) ;
  • Oh, Seo Young (Research Institute of Climate Change and Agriculture, NIHHS, RDA)
  • 이성은 (국립원예특작과학원 온난화대응농업연구소) ;
  • 문경환 (국립원예특작과학원 온난화대응농업연구소) ;
  • 신민지 (국립원예특작과학원 온난화대응농업연구소) ;
  • 오서영 (국립원예특작과학원 온난화대응농업연구소)
  • Received : 2020.09.02
  • Accepted : 2020.11.26
  • Published : 2020.12.30

Abstract

Process-based model (PBM), based on the interactions between endogenous physiological processes and many environmental factors, can be a powerful tool for estimating crop growth and productivity. Carbon acquisition and biomass accumulation are the main components in PBM, so it has become important to understand and integrate gas exchange process in crop model. This study aimed to assess the applicability of FvCB model (a leaf model of C3 photosynthesis proposed by Farquhar, von C aemmerer, and Berry (1980)) in onion (Allium cepa L.). For parameterization, two early-maturing onion cultivars, 'Singsingball' and 'Thunderball', grown in a temperature gradient plastic film house, were used in measuring leaf net CO2 assimilation rate (A), and then, parameter estimation was carried out for four parameters including Vcmax (maximum rate of carboxylation), Jmax (maximum rate of electron transport), TPU (rate of triose phosphate utilization), and Rd (Dark respiration rate). The gas-exchange model calibrated in this research is expected to be able to explain the photosynthetic responses of onion under various environmental conditions (R2=0.95***).

식물의 생리적 과정과 환경 요인 간 상호작용에 바탕을 둔 프로세스 모형은 작물 생육 및 생산성 예측을 위한 좋은 도구이다. 탄소 획득과 바이오매스 증가는 프로세스 모형 개발의 주요 구성요소로서, 작물모형 내에서 광합성 과정의 이해 및 통합에 중요한 역할을 한다. 본 연구는 1980년 Farquhar 등에 의해 제안된 C3 식물 잎의 광합성 모델인 FvCB 모형의 양파에 대한 적용 가능성 평가 및 적합한 모수 추정을 목표로 수행되었다. 이를 위해 온도구배하우스에서 재배된 조생종 양파 품종인 '싱싱볼'과 '썬더볼'의 광합성 측정 결과를 바탕으로 Vcmax, Jmax, TPU 및 Rd 값을 추정하였다. 본 연구에서 개발된 양파의 기체교환 모형은 다양한 환경 조건에서 양파의 광합성 반응 예측 및 설명에 유용하게 활용될 것으로 기대된다.

Keywords

References

  1. Ainsworth, E. A., and A. Rogers, 2007: The response of photosynthesis and stomatal conductance to rising [CO2]: Mechanisms and environmental interactions. Plant, Cell and Environment 30, 258-270. DOI: 10.1111/j.1365-3040.2007.01641.x
  2. Bernacchi, C. J., C. Pimentel, and S. P. Long, 2003: In vivo temperature response functions of parameters required to model RuBP-limited photosynthesis. Plant, Cell and Environment 26, 1419-1430. DOI: 10.1046/j.0016-8025.2003.01050.x
  3. Bernacchi, C. J., E. L. Singsaas, C. Pimentel, A. R. Portis Jr., and S. P. Long, 2001: Improved temperature response functions for models of Rubisco-limited photosynthesis. Plant, Cell and Environment 24, 253-259. DOI: 10.1046/j.1365-3040.2001.00668.x
  4. Buck-Sorlin, G., 2013: Process-based Model. In: Dubitzky, W., O. Wolkenhauer, K. H. Cho, and H. Yokota, (eds) Encyclopedia of Systems Biology. Springer, New York, NY.
  5. Cannell, M. G. R., and J. H. M. Thornley, 1998: Temperature and CO2 responses of leaf and canopy photosynthesis: A clarification using the nonrectangular hyperbola model of photosynthesis. Annals of Botany 82, 883-892. DOI: 10.1006/anbo.1998.0777
  6. De Pury, D. G. G., and G. D. Farquhar, 1997: Simple scaling of photosynthesis from leaves to canopies without the errors of big-leaf models. Plant, Cell and Environment 20, 537-557. DOI: 10.1111/j.1365-3040.1997.00094.x
  7. de Visser, C. L. M., 1994: ALCEPAS, an onion growth model based on SUCROS87. I. Development of the model. Journal of Horticultural Science 69, 501-518. DOI: 10.1080/14620316.1994.11516482
  8. Farquhar, G. D., S. von Caemmerer, and J. A. Berry, 1980: A biochemical model of photosynthetic CO2 assimilation in leaves of C3 species. Planta 149, 78-90. DOI: 10.1007/BF00386231
  9. Jones, H. G., 2014: Plants and Microclimate: a Quantitative Approach to Environmental Plant Physiology (Third ed.). Cambridge: Cambridge University Press. ISBN 978-0-521-27959-8.
  10. Kamenetsky, R., 2007: Garlic: Botany and horticulture. Horticultural Reviews 33, 123-172. DOI: 10.1002/9780470168011.ch2
  11. Kim, S. H., J. H. Jeong, and L. L. Nackley, 2013: Photosynthetic and transpiration responses to light, CO2, temperature, and leaf senescence in garlic: Analysis and modeling. Journal of the American Society for Horticultural Science 138, 149-156. DOI: 10.21273/jashs.138.2.149
  12. Kim, S. H., and J. H. Lieth, 2003: A coupled model of photosynthesis, stomatal conductance and transpiration for a rose leaf (Rosa hybrida L.). Annals of Botany 91, 771-781. DOI: 10.1093/aob/mcg080
  13. Nobel, P. S., 2009: Physicochemical and Environmental Plant Physiology (Fourth Edition). Academic Press. Page iv. ISBN 9780123741431.
  14. Rhoades, J., 2013: "What is Onion Bolting and how to Keep an Onion from Bolting". Gardening Know How. Retrieved 27 March 2013.
  15. Ribeiro, R. V., E. C. Machado, and R. F. D. Oliveira, 2006: Temperature response of photosynthesis and its interaction with light intensity in sweet orange leaf discs under non-photorespiratory condition. Ciencia e Agrotecnologia 30, 670-678. DOI: 10.1590/S1413-70542006000400012
  16. Sage, R. F., and D. S. Kubien, 2007: The temperature response of C3 and C4 photosynthesis. Plant, Cell and Environment 30, 1086-1106. DOI: 10.1111/j.1365-3040.2007.01682.x
  17. Sharkey, T. D., C. J. Bernacchi, G. D. Farquhar, and E. L. Singsaas, 2007: Fitting photosynthetic carbon dioxide response curves for C3 leaves. Plant, Cell and Environment 30, 1035-1040. DOI: 10.1111/j.1365-3040.2007.01710.x
  18. Simane, B., H. van Keulen, W. Stol, and P. C. Struik, 1994: Application of a crop growth model (SUCROS-87) to assess the effect of moisture stress on yield potential of durum wheat in Ethiopia. Agricultural Systems 44, 337-353. DOI: 10.1016/0308-521X(94)90226-6
  19. Urban, L., and H. Restrepo-Diaz, 2017: Influences of Abiotic Factors in Growth and Development. Reference Module in Life Sciences. Elsevier.