DOI QR코드

DOI QR Code

Atmospheric Corrosion and Surface Appearance of Galvalume Steel following Outdoor Exposure for 36 Months: A Korean Study

36개월간 국내 옥외폭로시험에 따른 갈바륨 강판의 대기부식거동 및 표면외관 변화

  • Kim, K.T. (Materials Research Center for Energy and Green Technology, School of Materials Science and Engineering, Andong National University) ;
  • Yoo, Y.R. (Materials Research Center for Energy and Green Technology, School of Materials Science and Engineering, Andong National University) ;
  • Kim, Y.S. (Materials Research Center for Energy and Green Technology, School of Materials Science and Engineering, Andong National University)
  • 김기태 (안동대학교 신소재공학부 청정에너지소재기술연구센터) ;
  • 유영란 (안동대학교 신소재공학부 청정에너지소재기술연구센터) ;
  • 김영식 (안동대학교 신소재공학부 청정에너지소재기술연구센터)
  • Received : 2020.12.15
  • Accepted : 2020.12.22
  • Published : 2020.12.31

Abstract

Galvalume steel (GL) is widely used in marine and industrial environments. It is characterized by better corrosion resistance than carbon steel. However, corrosion and economic losses may occur as the usage time is increased. Therefore, in this study, an outdoor exposure test of GL for 36 months was conducted across six regions of Korea. Parameters such as corrosion rate, chrominance (color, chroma, and brightness), glossiness, and surface appearance were analyzed. The results showed no significant change in appearance, and the initial corrosion rate was large, but a tendency to decrease with time was observed. Increased outdoor exposure time led to increase in the level of corrosion products. In the case of coastal areas where S, Cl, and other elements were detected, a relatively high decrease in Zn content was observed. Al forms a protective oxide film and exists in the coating layer, but Zn dissolves due to its chemical activity and low potential.

Keywords

References

  1. P. R. Roberge, Corrosion Engineering Princples and practice, pp. 379 - 381, McGraw-Hill, New York (2008).
  2. J. R. Davis, Corrosion Understanding the basics, pp. 387 - 391, ASM International, Ohio (2000).
  3. Z. Ahmad, Principles of Corrosion Engineering and Corrosion Control, pp. 407 - 411, Elsevier, Oxford (2006).
  4. A. R. Marder, Prog. Mater. Sci., 45, 191 (2000). https://doi.org/10.1016/S0079-6425(98)00006-1
  5. F. Rosalbino, E. Angelini, D. Maccio, and A. Saccone, Eletrochim. Acta, 52, 7107 (2007). https://doi.org/10.1016/j.electacta.2007.05.041
  6. P. Qiu, C. Leygraf, and I. O. Wallinder, Meter. Chem. Phys., 133, 419 (2012). https://doi.org/10.1016/j.matchemphys.2012.01.054
  7. C. Qiao, L. Shen, L. Hao, X. Mu, J. Dong, W. Ke, J. Liu, and B. Liu, J. Meter. Sci. Tech., 35, 2345 (2019). https://doi.org/10.1016/j.jmst.2019.05.039
  8. Y. Liu, A. Ooi, E. Tada, and A. Nishikta, Corros. Sci., 147, 273 (2019). https://doi.org/10.1016/j.corsci.2018.11.013
  9. M. Fedel, S. Rossi, and F. Deflorian, Pro. Org. Coat., 76, 194 (2013). https://doi.org/10.1016/j.porgcoat.2012.09.006
  10. R. Romero, F. Martin, J. R. Ramos-Barrado, and D. Le, Surf. Coat. Tech., 204, 2060 (2010). https://doi.org/10.1016/j.surfcoat.2009.10.006
  11. E. A. Alvarenga and V. F. C. Lins, Surf. Coat. Tech., 306, 428 (2016). https://doi.org/10.1016/j.surfcoat.2016.04.021
  12. R. R. Pareja, R. L. Ibanez, F. Martin, J. R. Ramos-Barrado, and D. Leinen, Surf. Coat. Tech., 200, 6606 (2006). https://doi.org/10.1016/j.surfcoat.2005.11.098
  13. D. Persson, D. Thierry, and O. Karlsson, Corros. Sci., 126, 152 (2017). https://doi.org/10.1016/j.corsci.2017.06.025
  14. E. Almeida, M. Morcillo, and B. Rosales, British Corros. J., 35, 284 (2000). http://dx.doi.org/10.1179/000705900101501353
  15. E. Almeida, M. Morcillo, and B. Rosales, British Corros. J., 35, 289 (2000). https://doi.org/10.1179/000705900101501362
  16. K. T. Kim and Y. S. Kim, Corros. Sci. Tech., 17, 231(2018). https://doi.org/10.14773/cst.2018.17.5.231
  17. KS D ISO 9226, Corrosion of metals and alloys - Corrosivity of atmospheres - Determination of corrosion rate of stand- ard specimens for the evaluation of corrosivity (2008).
  18. ISO 11664-4, Colorimetry - Part 4: CIE 1976 L*a*b*Colour space, ISO, Geneva, Switzerland (2008).
  19. S. Sharifzadeh, L. H. Clemmensen, C. Borggaard, S. Stoier, and B. K. Ersboll, Eng. Appl. Art. Intel., 27, 211 (2014). https://doi.org/10.1016/j.engappai.2013.09.004
  20. ISO 11664-6, Colorimetry - Part 6: CIEDE2000 Colour-difference formula, ISO, Geneva, Switzerland (2013).
  21. KS L 2405, Method of Measurement for Specular Glossiness, KS (2011).
  22. ASTM D 523, Standard Test Method for Specular Gloss, ASTM (1995).
  23. A. R. Moreira, Z. Panossian, P. L. Camargo, M. F. Moreira, I. C. Silva, and J. E. R. Carvalho, Corros. Sci., 48, 564 (2006). https://doi.org/10.1016/j.corsci.2005.02.012
  24. H. Peng, X. Su, Z. Li, J. Wang, C. Wu, H. Tu, and X. Lai, Surf. Coat. Tech., 206, 4329 (2012). https://doi.org/10.1016/j.surfcoat.2012.01.048
  25. D. Persson, D. Thierry, and N. LeBozec, Corros. Sci., 53, 720 (2011). https://doi.org/10.1016/j.corsci.2010.11.004
  26. A. P. Santos, S. M. Manhabosco, J. S. Rodrigues, and L. F. P. Dick, Surf. Coat. Tech., 279, 150 (2015). https://doi.org/10.1016/j.surfcoat.2015.08.046