DOI QR코드

DOI QR Code

폭풍파랑에 따른 해빈과 호형 사주 지형변화 현장 관측 및 XBeach 모델 민감도 분석

Field Observation of Morphological Response to Storm Waves and Sensitivity Analysis of XBeach Model at Beach and Crescentic Bar

  • 진혁 (한국해양대학교 해양과학기술융합학과) ;
  • 도기덕 (한국해양대학교 해양공학과) ;
  • 장성열 (해연기술 기술연구소) ;
  • 김인호 (강원대학교 지구시스템공학과)
  • Jin, Hyeok (Dept. of Convergence study on the Ocean Science and Technology, Korea Maritime and Ocean University) ;
  • Do, Kideok (Dept. of Ocean Engineering, Korea Maritime and Ocean University) ;
  • Chang, Sungyeol (Haeyeon Engineering and Consultants Corp) ;
  • Kim, In Ho (Dept. of Earth and Environmenal Engineering, Kangwon National University)
  • 투고 : 2020.11.17
  • 심사 : 2020.12.08
  • 발행 : 2020.12.31

초록

호형 사주는 동해안에서 흔히 분포하는 지형특징으로 고파랑시를 제외하고 리드미컬한 형상을 지속적으로 유지한다. 하지만, 2019년 9, 10월에 동해안에 직 간접적 영향을 미친 연속적인 4개의 태풍으로 인해 해안선과 평행한 연안사주가 형성되었고 해안선 부근에 침식과 퇴적이 반복되는 패턴을 보였지만 전반적인 해안선 후퇴가 발생하였다(약 2 m). 이와 같은 연속적인 폭풍파랑으로 인한 지형변화와 각 폭풍(NE-E 입사파) 이벤트의 영향을 모의하기 위해 폭풍 사상시 해빈의 침식 모의에 널리 사용되는 XBeach를 사용하였다. 개선된 XBeach 수치모의를 위해 최신 계수보정 연구 동향에 따라 계수보정이 실시되었으며, 이로부터 도출된 최적의 계수 값을 수치 모의에 적용하였다. 모델의 입력값으로 사용된 파랑, 조석 및 폭풍 사상 전후 수심 자료와 최적의 계수 값을 활용한 결과, 해안선 부근의 침식 및 퇴적 반복패턴(BSS = 0.77(침식 단면), 0.87(퇴적단면))과 해안선과 평행한 연안 사주의 형성을 성공적으로 모의하였다. 각 태풍의 최대 입사파고 도달 시 수치 모의된 전체 퇴적물 이동 벡터 및 지형변화 분석결과, 입사 파향이 호형 사주의 거동에 상당한 영향을 미치는 것으로 나타났다. 또한, 유의파고 크기뿐만 아니라 고파랑의 지속시간 또한 퇴적물 이동량의 중요한 요인으로 판단 된다. 하지만 모델링 결과, 내측 쇄파대(inner surfzone)의 지형변화 및 연안 사주의 마루의 정확한 위치 예측을 위해서는 추가적인 보정과정이 필요함을 시사한다.

Crescentic sand bar in the coastal zone of eastern Korea is a common morphological feature and the rhythmic patterns exist constantly except for high wave energy events. However, four consecutive typhoons that directly and indirectly affected the East Sea of Korea from September to October in 2019 impacted the formation of longshore uniform sand bar and overall shoreline retreats (approx. 2 m) although repetitive erosion and accretion patterns exist near the shoreline. Widely used XBeach to predict storm erosions in the beach is utilized to investigate the morphological response to a series of storms and each storm impact (NE-E wave incidence). Several calibration processes for improved XBeach modeling are conducted by recently reported calibration methods and the optimal calibration set obtained is applied to the numerical simulation. Using observed wave, tide, and pre & post-storm bathymetries data with optimal calibration set for XBeach input, XBeach successfully reproduces erosion and accretion patterns near MSL (BSS = 0.77 (Erosion profile), 0.87 (Accretion profile)) and observed the formation of the longshore uniform sandbar. As a result of analysis of simulated total sediment transport vectors and bed level changes at each storm peak Hs, the incident wave direction contributes considerable impact to the behavior of crescentic sandbar. Moreover, not only the wave height but also storm duration affects the magnitude of the sediment transport. However, model results suggest that additional calibration processes are needed to predict the exact crest position of bar and bed level changes across the inner surfzone.

키워드

과제정보

본 연구는 2020년 해양수산부 재원으로 해양수산과학기술진흥원의 해양수산과학기술진흥원의 지원(연안침식 관리 및 대응기술 실용화)과 한국연구재단(NRF-2019R1C1C1003160)의 지원을 받아 수행된 연구입니다.

참고문헌

  1. Athanasiou, P. (2017). Understanding the interactions between crescentic bars, human interventions and coastline dynamics at the East coast of South Korea. MSc thesis, Delft University of Technology, Delft.
  2. Castelle, B., Marieu, V., Bujan, S., Splinter, K.D., Robinet, A., Senechal, N. and Ferreira, S. (2015). Impact of the winter 2013-2014 series of severe Western Europe storms on a double-barred sandy coast: Beach and dune erosion and megacusp embayments. Geomorphology, 238, 135-148. https://doi.org/10.1016/j.geomorph.2015.03.006
  3. Castelle, B., Ruessink, B.G., Bonneton, P., Marieu, V., Bruneau, N. and Price, T.D. (2010). Coupling mechanisms in double sandbar systems. Part 1: Patterns and physical explanation. Earth Surface Processes and Landforms, 35(4), 476-486. https://doi.org/10.1002/esp.1929
  4. Chang, Y.S., Jin, J.Y., Jeong, W.M. and Do, J.D. (2017). Numerical investigation of the impacts of extreme storm waves on coastal erosion in Hujeong Beach using XBeach model. Journal of Coastal Disaster Prevention, 4(4), 197-206. https://doi.org/10.20481/kscdp.2017.4.4.197
  5. Cho, Y.J. and Kim, I.H. (2019). Preliminary study on the development of a platform for the selection of optimal beach stabilization measures against the beach erosion - centering on the yearly sediment budget of mang-bang beach. Journal of Korean Society of Coastal and Ocean Engineers, 31(1), 28-39 (in Korean). https://doi.org/10.9765/KSCOE.2019.31.1.28
  6. Daly, C., Roelvink, D., van Dongeren, A., van Thiel de Vries, J. and McCall, R. (2012). Validation of an advective-deterministic approach to short wave breaking in a surf-beat model. Coastal Engineering, 60(1), 69-83. https://doi.org/10.1016/j.coastaleng.2011.08.001
  7. De Vet, P.L.M. (2014). Modelling sediment transport and morphology during overwash and breaching events. MSc thesis, Delft University of Technology, Delft.
  8. Deltares (2018). XBeach Documentation, Release XBeach v1.23.5527 XbeachX FINAL. Deltares, Netherlands.
  9. Do, K., Shin, S., Cox, D. and Yoo, J. (2018). Numerical simulation and large-scale physical modelling of coastal sand dune erosion. Journal of Coastal Research, 85(May), 196-200. https://doi.org/10.2112/SI85-040.1
  10. Do, K. and Yoo, J. (2020). Morphological response to storms in an embayed beach having limited sediment thickness. Estuarine, Coastal and Shelf Science, 234, 106636. https://doi.org/10.1016/j.ecss.2020.106636
  11. Elsayed, S.M. and Oumeraci, H. (2017). Effect of beach slope and grain-stabilization on coastal sediment transport: An attempt to overcome the erosion overestimation by XBeach. Coastal Engineering, 121, 179-196. https://doi.org/10.1016/j.coastaleng.2016.12.009
  12. McCall, R.T., Van Thiel de Vries, J.S.M., Plant, N.G., Van Dongeren, A.R., Roelvink, J.A., Thompson, D.M. and Reniers, A.J.H.M. (2010). Two-dimensional time dependent hurricane overwash and erosion modeling at Santa Rosa Island. Coastal Engineering, 57(7), 668-683. https://doi.org/10.1016/j.coastaleng.2010.02.006
  13. Orzech, M.D., Reniers, A.J.H.M., Thornton, E.B. and MacMahan, J.H. (2011). Megacusps on rip channel bathymetry: Observations and modeling. Coastal Engineering, 58(9), 890-907. https://doi.org/10.1016/j.coastaleng.2011.05.001
  14. Passeri, D.L., Long, J.W., Plant, N.G., Bilskie, M.V. and Hagen, S.C. (2018). The influence of bed friction variability due to land cover on storm-driven barrier island morphodynamics. Coastal Engineering, 132, 82-94. https://doi.org/10.1016/j.coastaleng.2017.11.005
  15. Pender, D. and Karunarathna, H. (2013). A statistical-process based approach for modelling beach profile variability. Coastal Engineering, 81, 19-29. https://doi.org/10.1016/j.coastaleng.2013.06.006
  16. Razak, M.S.A., Dastgheib, A., Suryadi, F.X. and Roelvink, D. (2014). Headland structural impacts on surf zone current circulations. Journal of Coastal Research, 70, 65-71. https://doi.org/10.2112/SI70-12.1
  17. Roelvink, D., McCall, R., Mehvar, S., Nederhoff, K. and Dastgheib, A. (2018). Improving predictions of swash dynamics in XBeach: The role of groupiness and incident-band runup. Coastal Engineering, 134, 103-123. https://doi.org/10.1016/j.coastaleng.2017.07.004
  18. Roelvink, D., Reniers, A., van Dongeren, A., van Thiel de Vries, J., McCall, R. and Lescinski, J. (2009). Modelling storm impacts on beaches, dunes and barrier islands. Coastal Engineering, 56(11-12), 1133-1152. https://doi.org/10.1016/j.coastaleng.2009.08.006
  19. Roelvink, J.A. (1993). Dissipation in random wave groups incident on a beach. Coastal Engineering, 19(1-2), 127-150. https://doi.org/10.1016/0378-3839(93)90021-Y
  20. Smit, M., Reniers, A.J.H.M. and Stive, M.J.F. (2010). What Determines Nearshore Sandbar Response?. Proceedings of 32nd Conference on Coastal Engineering, Shanghai, China, 1-7.
  21. Son, S., Kim, J., Yoon, H.D., Jung, T.H., Do, K. and Shin, S. (2017). An Observational and numerical study of storm-induced morphologic changes at sanpo beach, Korea. Journal of Coastal Research, 33(Special Issue 79), 334-338.
  22. Sonu, C.J. (1973). Three-dimensional beach changes. The Journal of Geology, 81(1), 42-64. https://doi.org/10.1086/627806
  23. Soulsby, R.L. (1997). Dynamics of Marine Sands. Thomas Telford Publications, London.
  24. Van de Lageweg, W.I., Bryan, K.R., Coco, G. and Ruessink, B.G. (2013). Observations of shoreline-sandbar coupling on an embayed beach. Marine Geology, 344, 101-114. https://doi.org/10.1016/j.margeo.2013.07.018
  25. van Enckevort, I.M.J., Ruessink, B.G., Coco, G., Suzuki, K., Turner, I.L., Plant, N.G. and Holman, R.A. (2004). Observations of nearshore crescentic sandbars. Journal of Geophysical Research C: Oceans, 109(6), 1-17.
  26. van Rijn, L.C., Wasltra, D.J.R., Grasmeijer, B., Sutherland, J., Pan, S. and Sierra, J.P. (2003). The predictability of cross-shore bed evolution of sandy beaches at the time scale of storms and seasons using process-based profile models. Coastal Engineering, 47(3), 295-327. https://doi.org/10.1016/S0378-3839(02)00120-5
  27. van Rijn, L.C. (2007). Unified view of sediment transport by currents and waves. III: Graded beds. Journal of Hydraulic Engineering, 133(7), 761. https://doi.org/10.1061/(asce)0733-9429(2007)133:7(761)
  28. Vousdoukas, M.I., Ferreira, O., Almeida, L.P. and Pacheco, A. (2012). Toward reliable storm-hazard forecasts: XBeach calibration and its potential application in an operational earlywarning system. Ocean Dynamics, 62, 1001-1015. https://doi.org/10.1007/s10236-012-0544-6
  29. Wright, L.D. and Short, A.D. (1984). Morphodynamic variability of surf zones and beaches: A synthesis. Marine Geology, 56(1-4), 93-118. https://doi.org/10.1016/0025-3227(84)90008-2