References
- Arlot, S. and Celisse, A. (2010). A survey of cross-validation procedures for model selection. Static Surveys, 4. 40-79.
- Bataineh, M. and Marler, T. (2017). Neural network for regression problems with reduced training sets. Neural Networks, 95, 1-9. https://doi.org/10.1016/j.neunet.2017.07.018
- Bergstra, J. and Bengio, Y. (2012). Random search for hyperparameter optimization. Journal of Machine Learning Research, 13, 281-305.
- Buscombe, D., Carini, R.J., Harrison, S.R., Chickadel, C.C. and Warrick, J.A. (2020). Optical wave gauging using deep neural networks. Coastal Engineering, 155, 103593. https://doi.org/10.1016/j.coastaleng.2019.103593
- Bradford, S.F. (2000). Numerical simulation of surf zone dynamics. Journal of Waterway Port Coastal and Ocean Engineering, 126, 1-13. https://doi.org/10.1061/(ASCE)0733-950X(2000)126:1(1)
- Chella, M.A., Bihs, H., Myrhaug, D. and Muskulus, M. (2015). Breaking characteristics and geometric properties of spilling breakers over slopes. Coastal Engineering, 95, 4-19. https://doi.org/10.1016/j.coastaleng.2014.09.003
- Christensen, E.D. (2006). Large eddy simulation of spilling and plunging breakwaters. Coastal Engineering, 53, 463-485. https://doi.org/10.1016/j.coastaleng.2005.11.001
- Deo, M.C and Jagdale, S.S. (2003). Prediction of breaking waves with neural networks. Ocean Engineering, 30, 1163-1178. https://doi.org/10.1016/S0029-8018(02)00086-0
- Etemad-Shahidi, A., Shaeri, S. and Jafari, E. (2016). Prediction of wave overtopping at vertical structures. Coastal Engineering, 109, 42-52. https://doi.org/10.1016/j.coastaleng.2015.12.001
- Fisher, M.A. and Bolles, R.C. (1981). Random sample consensus: a paradigm for model fitting with applications to image analysis and automated cartography. Communications of the ACM, 24(6), 381-395. https://doi.org/10.1145/358669.358692
- Formentin, S.M. and Zanuttigh, B. (2019). A Genetic Programming based formula for wave overtopping by crown walls and bullnoses. Coastal Engineering, 152, 103529. https://doi.org/10.1016/j.coastaleng.2019.103529
- Goda, Y. (1970). A synthesis of breaker indices. Transactions of the Japan Society of Civil Engineers, 2(2), 39-40.
- Goda, Y. (2010). Reanalysis of regular and random breaking wave statistics. Coastal Engineering Journal, 52(1), 71-106. https://doi.org/10.1142/S0578563410002129
- Hieu, P.D., Katsutoshi, T. and Ca, V.T. (2004). Numerical simulation of breaking waves using a two-phase flow model. Applied Mathematical Modelling, 28, 983-1005. https://doi.org/10.1016/j.apm.2004.03.003
- Huber, P.J. (1964). Robust Estimation of a Location Parameter. Annals of Mathematical Statistics, 35(1), 73-101. https://doi.org/10.1214/aoms/1177703732
- Ishida, H. and Yamaguchi, N. (1983). A theory for wave breaking on slopes and its application. Proceedings of 30th Japanese Conference on Coastal Engineering, JSCE, 34-38 (in Japanese).
- James, S.C., Zhang, Y. and O'Donncha, F. (2018). A machine learning framework to forecast wave conditions. Coastal Engineering, 137, 1-10. https://doi.org/10.1016/j.coastaleng.2018.03.004
- Kakuno, S., Sugita, T. and Goda, T. (1996). Effects of wave breaking on entrainemnt of oxygen, a review. Proceedings of 43rd Japanese Conderence on Coastal Engineering, JSCE, 1211-1215 (in Japanese).
- Kazeminezhad, M.H. and Etemad-Shahidi, A. (2015). A new method for the prediction of wave runup on vertical piles. Coastal Engineering, 98, 55-64. https://doi.org/10.1016/j.coastaleng.2015.01.004
- Kim, D.H., Kim, Y.J., Hur, D.S., Jeon, H.S. and Lee, C. (2010). Calculating expected damage of breakwater using artificial neural network for wave height calculation. Journal of Korean Society of Coastal and Ocean Engineers, 22(2), 126-132.
- Kim, D.H. and Park, W.S. (2005). Neural network for design and reliability analysis of rubble mound breakwaters. Ocean Engineering, 32, 1332-1349. https://doi.org/10.1016/j.oceaneng.2004.11.008
- Kim, S.W. and Suh, K.D. (2011). Prediction of stability number for tetrapod armour block using artificial neural network and M5' model tree. Journal of Korean Society of Coastal and Ocean Engineers, 23(1), 109-117. https://doi.org/10.9765/KSCOE.2011.23.1.109
- Lara, J.L., Losada, I.J. and Liu, P.L.F. (2006). Breaking waves over mild gravel slope: Experimental and numerical analysis. Journal of Geophysical Research, 111, 1-26.
- Lee, J.S. and Suh, K.D. (2016). Calculation of stability number of tetrapods using weights and biases of ANN model. Journal of Korean Society of Coastal and Ocean Engineers, 28(5), 277-283. https://doi.org/10.9765/KSCOE.2016.28.5.277
- Lee, K.H., Kim, T.G. and Kim, D.S. (2020). Prediction of wave breaking using machine learning open source platform. Journal of Korean Society of Coastal and Ocean Engineers, 32(4), 262-272 https://doi.org/10.9765/KSCOE.2020.32.4.262
- Lee, K.H., Mizutani, N., Hur, D.S. and Kamiya, A. (2007). The Effect of groundwater on topographic changes in a gravel beach. Ocean Engineering, 34, 605-615. https://doi.org/10.1016/j.oceaneng.2005.10.026
- Lin, P. and Liu, P.L.F. (1998). A numerical study of breaking waves in the surf zone. Journal of Fluid Mechanics, 359, 239-264. https://doi.org/10.1017/S002211209700846X
- Liu, Y., Niu, X. and Yu, X. (2011). A new predictive formula for inception of regular wave breaking. Coastal Engineering 58(9), 877-889. https://doi.org/10.1016/j.coastaleng.2011.05.004
- McCowan, J. (1984). On the highest wave of permanent type. Philosophical Magazine, 38(5), 351-358.
- Miche, R. (1944). Mouvements ondulatoires de la mer en profondeur constante ou decroissante. Annales de Ponts et Chaussees, 114, 26-78, 270-292, 369-406 (in French).
- Munk, W.H. (1949). The solitary wave theory and its applications to surf problems. Annals of the New York Academy of Sciences, 51(3), 376-462. https://doi.org/10.1111/j.1749-6632.1949.tb27281.x
- Oh, N.S. and Jeong, S.T. (2015). The Prediction of Water Temperature at Saemangeum Lake by Neural Network. Journal of Korean Society of Coastal and Ocean Engineers, 27(1), 56-62. https://doi.org/10.9765/KSCOE.2015.27.1.56
- Pedregosa, F., Varoquaux, G., Gramfort, A. Michel, V., Thirion, B., Grisel, O., Blondel, M, Prettenhofer, P., Weiss, R., Dubourg, V., Vanderplas, J., Passos, A. and Cournapeau, D. (2011). Scikitlearn: Machine Learning in Python. Journal of Machine Learning Research, 12, 2825-2830.
- Rattanapitikon, W. and Shibayama, T. (2006). Braking wave formulas for breaking depth and orbital to phase velocity ratio. Coastal Engineering Journal, 48(4), 395-416. https://doi.org/10.1142/S0578563406001489
- Ren, J. (2012). ANN vs. SVM: Which one performs better in classification of MCCs in mammogram imaging. Knowledge-Based Systems, 26, 144-153. https://doi.org/10.1016/j.knosys.2011.07.016
- Sakai, S., Kazumi, S., Ono, T., Yamashita, T. and Saeki, H. (1986). Study on wave breaking and its resulting entrainment of air. Proceedings of 33rd Japanese Conference on Coastal Engineering, JSCE, 16-20 (in Japanese).
- Samuel, A.L. (1959). Some studies in machine learning using the game of checkers. IBM Journal of Research and Development, 3(3), 210-229. https://doi.org/10.1147/rd.33.0210
- Smith, E.R. and Kraus, N.C. (1990). Laboratory study on macrofeatures of wave breaking over bars and artificial reefs. U.S. Army Corps of Engineers Technical Report CREC-90-12, WES, 232p.
- Stringari, D.L., Harris, D.L. and Power, H.E. (2019). A novel machine learning algorithm for tracking remotely sensed waves in the surf zone. Coastal Engineering, 147, 149-158. https://doi.org/10.1016/j.coastaleng.2019.02.002
- Stokes, G.G. (1880). Appendices and supplement to a paper on the theory of oscillatory waves. Mathematical and Physical Papers, 1, 219-229.
- Vapnik, V.N. (1995). The Nature of Statistical Learning Theory. Springer, New York.
- Xie, W., Shibayama, T. and Esteban, M. (2019). A semi-empirical formula for calculating the breaking depth of plunging waves. Coastal Engineering Journal, 61(2), 199-209. https://doi.org/10.1080/21664250.2019.1579459
- Yi, J.K., Ryu, K.H., Baek, W.D. and Jeong, W.M. (2017). Wave height and downtime event forecasting in harbour with complex topography using auto-regressive and artificial neural networks Models. Journal of Korean Society of Coastal and Ocean Engineers, 29(4), 180-188. https://doi.org/10.9765/KSCOE.2017.29.4.180
- Zhao, Q., Armfield, S. and Tanimoto, K. (2004). Numerical simulation of breaking waves by a multi-scale turbulence model. Coastal Engineering, 51, 53-80. https://doi.org/10.1016/j.coastaleng.2003.12.002