DOI QR코드

DOI QR Code

공기에 의한 탄소섬유 스프레딩 공정 변수에 따른 프로세스 성능 및 기계적 물성 평가

Evaluation of Process Performance and Mechanical Properties according to Process Variables of Pneumatic Carbon Fiber Tow Spreading

  • Roh, Jeong-U (Gumi Electronics & Information Technology Research Institute, Innovative Technology Research Division) ;
  • Baek, Un-Gyeong (Gumi Electronics & Information Technology Research Institute, Innovative Technology Research Division) ;
  • Roh, Jae-Seung (Kumoh National Institute of Technology, Materials Science and Engineering) ;
  • Nam, Gibeop (Kumoh National Institute of Technology, Advanced Material Research Center)
  • 투고 : 2020.11.07
  • 심사 : 2020.12.11
  • 발행 : 2020.12.31

초록

탄소섬유 스프레드 토우를 제조하는 과정에서 섬유 손상이 발생하며, 이는 스프레딩 과정에서 장비와 섬유 사이 혹은 섬유 간의 마찰로 발생한다. 이로 인해, 재료 및 장비조건에 따라 프로세스 성능에 차이가 발생하고, 제품 물성이 하락한다. 섬유 손상을 최소화하는 것은 스프레드 토우를 제조하는 공정에서 반드시 고려되어야 한다. 본 연구에서는 공기를 이용한 탄소섬유 스프레딩 공정에서 탄소섬유의 필라멘트 수와 사이징 함량, 탄소섬유토우 스프레딩 장비의 공정 변수(초기섬유장력, 열풍온도, 진공압력)를 달리하여 스프레드 토우의 공정성능 변화를 관찰하였다. 탄소섬유 품종에 따른 조건 별 최적조건에서 제조된 샘플을 이용해 인장강도를 평가하여, 탄소섬유의 손상에 따른 기계적 물성 감소를 확인하였다.

The carbon fiber has been damaged via tow spreading process for carbon fiber spread tow. The fiber damage is caused by friction between equipment and fibers or between fibers and fibers in the process of spreading. As a result, mechanical properties are decreased due to differences in process via material and equipment condition. Therefore, minimizing fiber damage have to be considered in the process. In this study, the change in carbon fiber pneumatic spreading process was observed by according to the filament count, sizing content of carbon fiber and process variables in spreading equipment (fiber tension at the beginning, air temperature in spreading zone, vacuum pressure in spreading zone). Tensile strength was evaluated using samples prepared under optimal conditions for each of the carbon fiber varieties, and mechanical properties were reduced due to damage on the carbon fiber.

키워드

참고문헌

  1. Morgan, P., Carbon Fibers and Their Composites, Boca Raton: Taylor and Francis, New York, U.S, 2005, pp. 121-184.
  2. Eun, J.H., Gwak, J.W., Kim, K.J., Kim, M.S., Sung, S.M., Choi, B.K., Kim, D.H., and Lee, J.S., "Effect of Fabricating Temperature on the Mechanical Properties of Spread Carbon Fiber Fabric Composites," Composites Research, Vol. 33, No. 3, 2020, pp. 161-168.
  3. Roh, J.U., and Lee, W.I., "Review: Continuous Fiber Tow Spreading Technologies and Its Applications," Composites Research, Vol. 26, No. 3, 2013, pp. 155-159. https://doi.org/10.7234/composres.2013.26.3.155
  4. Shin, S.W., Kim, R.Y., Kawabe, K., and Tsai, S., "Experimental Studies of Thin-ply Laminated Composites," Composites Science and Technology, Vol. 67, No. 6, 2007, pp. 996-1008. https://doi.org/10.1016/j.compscitech.2006.06.008
  5. Kawabe, K., and Tomoda, S., "Development of the Spreading Technology for the Reinforcing Fiber Tow", Sen'i Gakkaishi, Vol. 59, No. 9, 2003, pp. 292-297.
  6. Nishikawa, Y., Miki, T., Okubo, K., Fujii, T., and Kawabe, K., "Fatigue Behaviour of Plain Woven CF/Epoxy Composites using Spread Tows (Effect of Tow Thickness on Crack Formation):Effect of Tow Thickness on Crack Formation" Transactions of the Japan Society of Mechanical Engineers Series A, Vol. 71, No. 710, 2005, pp. 1356-1361. https://doi.org/10.1299/kikaia.71.1356
  7. Lee, G.H., and Lee, W.I., "Carbon Fiber Two Spreading Process Using Pneumatic Devices and Application to Thermoplastic Prepreg Manufacturing," Proceeding of the 20th International Conference on Composite Materials, Copenhagen, Denmark, July. 2015.
  8. Park, S.M., Kim, M.S., Choi Y.S., Lee, E.S., Yoo, H.W., and Chon, J.S., "Carbon Fiber Tow Spreading Technology and Mechanical Properties of Laminate Composites," Composites Research, Vol. 28, No. 5, 2015, pp. 249-253. https://doi.org/10.7234/composres.2015.28.5.249
  9. El-Dessouky, H.M., and Lawrence, C.A., "Ultra-lightweight Carbon Fibre/Thermoplastic Composite Material Using Spread Tow Technology," Composites Part B: Engineering, Vol. 50, 2013, pp. 91-97. https://doi.org/10.1016/j.compositesb.2013.01.026