DOI QR코드

DOI QR Code

A Review of Graphene Nanoplatelets in Nanocomposites: Dispersion

그래핀나노플레이트 나노복합소재 분산법 연구 동향

  • Park, Sang-Yu (Center for Carbon Convergence Materials, Korea Institute of Carbon Convergence Technology) ;
  • Hwang, Ji-Young (Center for Carbon Convergence Materials, Korea Institute of Carbon Convergence Technology) ;
  • Park, Young Su (Center for Carbon Convergence Materials, Korea Institute of Carbon Convergence Technology) ;
  • Kang, Seung Beom (Center for Carbon Convergence Materials, Korea Institute of Carbon Convergence Technology)
  • Received : 2020.11.10
  • Accepted : 2020.12.09
  • Published : 2020.12.31

Abstract

Recently, development of nanocomposite materials for applying in various fields has been actively underway. Of the two-dimensional nanomaterials, graphene nanoplatelets (GnPs) are highly utilized because of their excellent properties, but a problem of strong aggregations is occurred when GnPs are fabricated with polymer nanocomposites, so there is a growing demand for research on the methods of dispersion. In this review paper, the research on GnP nanocomposites with improved properties through various dispersion methods of GnPs. The welldispersed GnP nanocomposites will be applied in more diverse fields in the future.

최근 다양한 분야에서 활용하기 위한 고분자 나노복합소재 개발이 활발히 진행되고 있다. 2차원 나노소재 중 물성이 우수하다고 알려진 신소재인 그래핀나노플레이트를 활용하여 고분자 기지와 복합소재를 제조할 때 강한 응집현상이 일어나기 때문에 우선적으로 분산 문제를 해결하고자 하는 요구가 높아지고 있다. 본 리뷰 논문에서는 그래핀나노플레이트의 다양한 분산법을 사용하여 분산성이 향상된 탄소 나노복합소재 제조에 대한 연구를 소개하고자 한다. 고분산성을 통해 물성이 향상된 탄소 나노복합소재는 앞으로 더욱 다양한 분야에서 널리 활용될 것이다.

Keywords

References

  1. Yadav, S.K., and Cho, J.W., "Functionalized Graphene Nanoplatelets for Enhanced Mechanical and Thermal Properties of Polyurethane Nanocomposites," Applied Surface Science, Vol. 266, 2013, pp. 360-367. https://doi.org/10.1016/j.apsusc.2012.12.028
  2. Shao, Y., Zhang, S., Wang, C., Nie, Z., Liu, J., Wang Y., and Lin, Y., "Highly durable Graphene Nanoplatelets Supported Pt Nanocatalysts for Oxygen Reduction," Journal of Power Sources, Vol. 195, No. 15, 2010, pp. 4600-4605. https://doi.org/10.1016/j.jpowsour.2010.02.044
  3. King, J.A., Klimek, D.R., Miskioglu, I., and Odegard, G.M., "Mechanical Properties of Graphene Nanoplatelet/Epoxy Composites," Journal of Applied Sciences, Vol. 128, No. 6, 2013, pp. 4217-4223.
  4. Rashada, M., Pana, F., Tang, A., and Asifd, M., "Effect of Graphene Nanoplatelets Addition on Mechanical Properties of Pure Aluminum Using a Semi-powder Method," Progress in Natural Science: Materials International, Vol. 24, No. 2, 2014, pp. 101-108. https://doi.org/10.1016/j.pnsc.2014.03.012
  5. Prolongo, S.G., Moriche, R., Jimenez-Suarez, A., Sanchez, M., and Urena, A., "Advantages and Disadvantages of the Addition of Graphene Nanoplatelets to Epoxy Resins," European Polymer Journal, Vol. 61, 2014, pp. 206-214. https://doi.org/10.1016/j.eurpolymj.2014.09.022
  6. Yue, L., Pircheraghi, G., Monemian, S.I., and Manas-Zloczower, I., "Epoxy Composites with Carbon Nanotubes and Graphene Nanoplatelets - Dispersion and Synergy Effects," Carbon, Vol. 78, 2014, pp. 268-278. https://doi.org/10.1016/j.carbon.2014.07.003
  7. Yarmand, H., Gharehkhani, S., Ahmadi, G., Shirazi, S.F.S., Baradaran, S., Montazer E., Zubir, M.N.M., Alehashem, M.S., Kazi, S.N., and Dahari, M., "Graphene Nanoplatelets-silver Hybrid Nanofluids for Enhanced Heat Transfer," Energy Conversion and Management, Vol. 100, 2015, pp. 419-428. https://doi.org/10.1016/j.enconman.2015.05.023
  8. Wang, F., Drzal, L.T., Qin, Y., and Huang, Z., "Enhancement of Fracture Toughness, Mechanical and Thermal Properties of Rubber/epoxy Composites by Incorporation of Graphene Nanoplatelets," Composites Part A: Applied Science and Manufacturing, Vol. 87, 2016, pp. 10-22. https://doi.org/10.1016/j.compositesa.2016.04.009
  9. Iranmanesh, S., Ong, H. C., Ang, B.C., Sadeghinezhad, E., Esmaeilzadeh, A., and Mehrali M., "Thermal Performance Enhancement of an Evacuated Tube Solar Collector Using Graphene Nanoplatelets Nanofluid," Journal of Cleaner Production, Vol. 162, 2016, pp. 121-129. https://doi.org/10.1016/j.jclepro.2017.05.175
  10. Wang, B., Jiang, R., Song, W., and Liu, H., "Controlling Dispersion of Graphene Nanoplatelets in Aqueous Solution by Ultrasonic Technique," Russian Journal of Physical Chemistry A, Vol. 91, No. 8, 2017, pp. 1517-1526. https://doi.org/10.1134/S0036024417080040
  11. Sharmaa, A., Narsimhachary, D., Sharma, V.M., Sahoo, B., and Paul, J., "Surface Modification of Al6061-SiC Surface Composite through Impregnation of Graphene, Graphite & Carbon Nanotubes via FSP: A Tribological Study," Surface & Coatings Technology, Vol. 368, 2019, pp. 175-191. https://doi.org/10.1016/j.surfcoat.2019.04.001
  12. Paszkiewicz, S., Szymczyk, A., Sui, X.M., Wagner, H.D., Linares, A., Ezquerra T.A., and Roslaniec Z., "Synergetic Effect of Single-walled Carbon Nanotubes (SWCNT) and Graphene Nanoplatelets (GNP) in Electrically Conductive PTT-block-PTMO Hybrid Nanocomposites Prepared by in situ Polymerization," Composites Science and Technology, Vol. 118, 2015, pp. 72-77. https://doi.org/10.1016/j.compscitech.2015.08.011
  13. Chatterjee, S., Nafezarefi, F., Tai, N.H., Schlagenhauf, L., Nuesch, F.A., and Chu, B.T.T., "Size and Synergy Effects of Nanofiller Hybrids Including Graphene Nanoplatelets and Carbon Nanotubes in Mechanical Properties of Epoxy Composites," Carbon, Vol. 50, 2012, pp. 5380-5386. https://doi.org/10.1016/j.carbon.2012.07.021
  14. Lin, Y., Wood, M., Imasato, K., Kuo, J.J., Lam, D., Mortazavi, N., Slade, T.J., Hodge, S.A., Xi, K., Kanatzidis, M.G., Clarke, D.R., Hersama, M.C., and Snyder, G.J., "Expression of Interfacial Seebeck Coefficient through Grain Boundary Engineering with Multi-Layer Graphene Nanoplatelets," Energy and Environment Science, Vol. 13, No. 11, 2020, pp. 4114-4121. https://doi.org/10.1039/D0EE02490B
  15. Scaffaro, R., Botta, L., Maio, A., and Gallo, G., "PLA Graphene Nanoplatelets Nanocomposites: Physical Properties and Release Kinetics of an Antimicrobial Agent," Composites Part B: Engineering, Vol. 109, 2017, pp. 138-146. https://doi.org/10.1016/j.compositesb.2016.10.058
  16. Le, J.L., Du, H., and Pang, S.D., "Use of 2-D Graphene Nanoplatelets (GNP) in Cement Composites for Structural Health Evaluation," Composites Part B: Engineering, Vol. 67, 2014, pp. 555-563. https://doi.org/10.1016/j.compositesb.2014.08.005
  17. Sun, S., Guo, L., Chang, X., Liu, Y., Niu, S., Lei Y., Liu, T., and Hu, X., "A Wearable Strain Sensor Based on the ZnO/graphene nanoplatelets Nanocomposite with large Linear Working Range," Journal of Materials Science, Vol. 54, No. 9, 2019, pp. 7048-7061. https://doi.org/10.1007/s10853-019-03354-6
  18. Filippidou, M.K., Tegou, E., Tsouti, V., and Chatzandroulis, S., "A Flexible Strain Sensor Made of Graphene Nanoplatelets/polydimethylsiloxane Nanocomposite," Microelectronic Engineering, Vol. 142, 2015, pp. 7-11. https://doi.org/10.1016/j.mee.2015.06.007
  19. Kavan, L., Yum, J.H., Nazeeruddin, M.K., Gratzel, M., "Graphene Nanoplatelet Cathode for Co(III)/(II) Mediated Dye-Sensitized Solar Cells," ACS Nano, Vol. 5, No. 11, 2011, pp. 9171-9178. https://doi.org/10.1021/nn203416d
  20. Jeon, I.Y., Zhang, S., Zhang, L., Choi, H.-J., Seo, J.-M., Xia, Z., Dai, L., and Baek, J.-B., "Edge-Selectively Sulfurized Graphene Nanoplatelets as Efficient Metal-Free Electrocatalysts for Oxygen Reduction Reaction: The Electron Spin Effect," Advanced Matrials, Vol. 25, No. 42, 2013, pp. 6138-6145. https://doi.org/10.1002/adma.201302753
  21. Xiang, J., and Drzal, L.T., "Templated Growth of Polyaniline on Exfoliated Graphene Nanoplatelets (GNP) and Its Thermoelectric Properties," Polymer, Vol. 53, No. 19, 2012, pp. 4202-4210. https://doi.org/10.1016/j.polymer.2012.07.029
  22. Kavan, L., Yum, J.-H., and Gratze, M., "Graphene Nanoplatelets Outperforming Platinum as the Electrocatalyst in Co-Bipyridine-Mediated Dye-Sensitized Solar Cells," Nano Letters, Vol. 11, No. 12, 2011, pp. 5501-5506. https://doi.org/10.1021/nl203329c
  23. Yang, B., Shi, Y., Miao, J.B., Xia, R., Su, L.F., Qian, J.S., Chen, P., Zhang, Q.L., and Liu, J.W., "Evaluation of Rheological and Thermal Properties of Polyvinylidene Fluoride (PVDF)/graphene Nanoplatelets (GNP) Composites," Polymer Testing, Vol. 67, 2018, pp. 122-135. https://doi.org/10.1016/j.polymertesting.2018.02.011
  24. Watt, E., Abdelwahab, M.A., Snowdon, M.R., Mohanty, A.K., Khalil, H., and Misra, M., "Hybrid Biocomposites from Polypropylene, Sustainable Biocarbon and Graphene Nanoplatelets," Scientific Reports, Vol. 10, No. 1, 2020, pp. 1-13. https://doi.org/10.1038/s41598-019-56847-4
  25. Alam, F., Choosri, M., Gupta, T.K., Varadarajan, K.M., Choia, D., and Kumar, S., "Electrical, Mechanical and Thermal Properties of Graphene Nanoplatelets Reinforced UHMWPE Nanocomposites," Materials Science & Engineering B, Vol. 241, 2019, pp. 82-91. https://doi.org/10.1016/j.mseb.2019.02.011
  26. Ahmadi-Moghadam, B., Sharafimasooleh, M., Shadlou, S., and Taheri, F., "Effect of Functionalization of Graphene Nanoplatelets on the Mechanical Response of Graphene/epoxy Composites," Materials & Design, Vol. 66, 2015, pp. 419-428.
  27. Mehrali, M., Sadeghinezhad, E., Latibari, S.T., Kazi, S.N., Mehrali, M., Zubir, M.N.B.M., and Metselaar, H.S.C., "Investigation of Thermal Conductivity and Rheological Properties of Nanofluids Containing Graphene Nanoplatelets," Nanoscale Research Letter, Vol. 9, No. 1, 2014, pp. 15. https://doi.org/10.1186/1556-276x-9-15
  28. Qin, W., Vautard, F., Drzal, L.T., and Yu, J., "Mechanical and Electrical Properties of Carbon Fiber Composites with Incorporation of Graphene Nanoplatelets at the Fiber-Matrix Interphase," Composites Part B: Engineering, Vol. 69, 2015, pp. 335-341. https://doi.org/10.1016/j.compositesb.2014.10.014
  29. Yadav, S.D., Bhingole, P.P., Chaudhari, G.P., Nath, S.K., and Sommitsch, C., "Hybrid Processing of AZ91 Magnesium Alloy/nano-Al2O3 Composites," Key Engineering Materials, Vol. 651-653, 2015, pp. 783-788. https://doi.org/10.4028/www.scientific.net/KEM.651-653.783
  30. Singh, L.K., Bhadauria, A., and Laha, T., "Comparing the Strengthening Efficiency of Multiwalled Carbon Nanotubes and Graphene Nanoplatelets in Aluminum Matrix," Powder Technology, Vol. 356, 2019, pp. 1059-1076. https://doi.org/10.1016/j.powtec.2019.09.026
  31. Kamar, N.T., Hossain, M.M., Khomenko, A., Haq, M., Drzal, L.T., and Loos, A., "Interlaminar Reinforcement of Glass Fiber/epoxy Composites with Graphene Nanoplatelets," Composites: Part A, Vol. 70, 2015, pp. 82-92. https://doi.org/10.1016/j.compositesa.2014.12.010
  32. Al-Hamadani, Y.A.J., Chu, K.H., Son, A., Heo, J., Her, N., Jang, M., Park, C.M., and Yoon, Y., "Stabilization and Dispersion of Carbon Nanomaterials in Aqueous Solutions: A Review," Separation and Purification Technology, Vol. 156, No. 2, 2015, pp. 861-874. https://doi.org/10.1016/j.seppur.2015.11.002
  33. Huang, Y.Y., and Terentjev, E.M., "Dispersion and Rheology of Carbon Nanotubes in Polymers," International Journal of Material Forming, Vol. 1, No. 2, 2008, pp. 63-74. https://doi.org/10.1007/s12289-008-0376-6
  34. Ndlwana, L., Motsa, M.M., and Mamba, B.B., "A Unique Method for Dopamine-cross-linked Graphene Nanoplatelets within Polyethersulfone Membranes (GNP-pDA/PES) for Enhanced Mechanochemical Resistance during NF and RO Desalination", European Polymer Journal, Vol. 136, 2020, pp. 109889. https://doi.org/10.1016/j.eurpolymj.2020.109889
  35. Baig, Z., Mamat, O., Mustapha, M., Mumtaz, A., Munir, K.S., and Sarfraz, M., "Investigation of Tip Sonication Effects on Structural Quality of Graphene Nanoplatelets (GNPs) for Superior Solvent Dispersion," Ultrason Sonochem, Vol. 45, pp. 133-149. https://doi.org/10.1016/j.ultsonch.2018.03.007
  36. Ma, P.-C., Siddiqui, N.A., Marom, G., and Kim, J.-K., "Dispersion and Functionalization of Carbon Nanotubes for Polymerbased Nanocomposites: A Review," Composites: Part A, Vol. 41, No. 10, 2010, pp. 1345-1367. https://doi.org/10.1016/j.compositesa.2010.07.003
  37. Paton, K.R., Varrla, E., Backes, C., Smith, R.J., Khan, U., O'Neill, A., Boland, C., Lotya, M., Istrate, O. M., King, P., Higggins, T., Barwich, S., May, P., Puczkarski, P., Ahned, I., Moebius, M., Pettersson, H., Long, E., Coelho, J., O'Brien, S.E., McGuire, E.K., Sanchez, B.M., Duesberg, G.S., McEvoy, N., Pennycook, T.J., Downing, C., Crossley, A., Nicolosi, V., and Coleman, J.N., "Scalable Production of Large Quantities of Defect-free Few-layer Graphene by Shear Exfoliation In Liquids," Nature Materials, Vol. 13, No. 6, 2014, pp. 624-630. https://doi.org/10.1038/nmat3944
  38. Zhao, R., Han, Y., He, M., and Li, Y., "Grinding Kinetics of Quartz and Chlorite in Wet Ball Milling," Powder Technology, Vol. 305, 2017, pp. 418-425. https://doi.org/10.1016/j.powtec.2016.07.050
  39. Rishi, A.M., Kandlikar, S.G., and Gupta, A., "Salt Templated and Graphene Nanoplatelets Draped Copper (GNP-draped-Cu) Composites for Dramatic Improvements in Pool Boiling Heat Transfer," Scientific Reports, Vol. 10, No. 1, 2020, pp. 11941. https://doi.org/10.1038/s41598-020-68672-1
  40. Mao, M., Chen, S., He, P., Zhang, H., and Liu, H., "Facile and Economical Mass Production of Graphene Dispersions and Flakes," Journal of Materials Chemistry A, Vol. 2, No. 12, 2014, pp. 4132-4135. https://doi.org/10.1039/c3ta14632d
  41. Guo, W., and Chen, C, "Fabrication of Graphene/Epoxy Resin Composites with Much Enhanced Thermal Conductivity via Ball Milling Technique," Journal of Applied Polymer Sciences, Vol. 131, No. 15, 2014, pp. 40565.
  42. Jung, Y., Stevens, E., Ding, B., Kim, S.-D., Woo, S.-K., and Lee, J.-K., "Microstructure and Electrical Conductivity in Shape and Size Controlled Molybdenum Particle Thick Film," Journal of Materials Science, Vol. 48, No. 10, 2013, pp. 3760-3768. https://doi.org/10.1007/s10853-013-7175-2
  43. Cha, J., Kim, J., Ryu, S., and Hong, S.H., "Comparison to Mechanical Properties of Epoxy Nanocomposites Reinforced by Functionalized Carbon Nanotubes and Graphene Nanoplatelets," Composites Part B: Engineering, Vol. 162, 2019, pp. 283-288. https://doi.org/10.1016/j.compositesb.2018.11.011
  44. Cataldo, A., Biagetti, G., Mencarelli, D., Micciulla, F., Crippa, P., Turchetti, C., Pierantoni, L., and Bellucci, S., "Modeling and Electrochemical Characterization of Electrodes Based on Epoxy Composite with Functionalized Nanocarbon Fillers at High Concentration," Nanomaterials, Vol. 10, No. 5, 2020, pp. 850. https://doi.org/10.3390/nano10050850
  45. Che, W.M., Teh, P.L., Jalilah, A.J., and Yeoh, C.K., "The Effect of the GNP-SDS Loadings on the Properties of the NRL/GNPSDS Composites," Materials Science and Engineering, Vol. 864, No. 1, 2020, pp. 012140.
  46. Shazali, S.S., Amiri, A., Zubir, M.N.M., Rozali, S., Zabri, M.Z., Sabri, M.F.M., and Soleymaniha, M., "Investigation of the Thermophysical Properties and Stability Performance of Noncovalently Functionalized Graphene Nanoplatelets with Pluronic P-123 in Different Solvents," Materials Chemistry and Physics, Vol. 206, 2018, pp. 94-102. https://doi.org/10.1016/j.matchemphys.2017.12.008
  47. Simon, T., Potara, M., Gabudean, A.-M., Licarete, E., Banciu, M., and Astilean, S., "Designing Theranostic Agents Based on Pluronic Stabilized Gold Nanoaggregates Loaded with Methylene Blue for Multimodal Cell Imaging and Enhanced Photodynamic Therapy," ACS Applied Materials & Interfaces, Vol. 7, No. 30, 2015, pp. 16191-16201. https://doi.org/10.1021/acsami.5b04734
  48. Manta, A., Gresil, M., and Soutis, C., "Infrared Thermography for Void Mapping of a Graphene/epoxy Composite and Its Full‐field Thermal Simulation," Fatigue & Fracture of Engineering Materials, Vol. 42, No. 7, 2019, pp. 1441-1453. https://doi.org/10.1111/ffe.12980
  49. Ajorloo, M., Fasihi, M., Ohshima, M., and Taki, K., "How are the Thermal Properties of Polypropylene/graphene Nanoplatelet Composites Affected by Polymer Chain Configuration and Size of Nanofiller?," Materials and Design, Vol. 181, 2019, pp. 108068. https://doi.org/10.1016/j.matdes.2019.108068
  50. Maiti, S., Shrivastava, N.K., Suin, S., and Khatua, B.B., "Polystyrene/MWCNT/Graphite Nanoplate Nanocomposites: Efficient Electromagnetic Interference Shielding Material through Graphite Nanoplate−MWCNT−Graphite Nanoplate Networking," ACS Applied Materials & Interfaces, Vol. 5, No. 11, 2013, pp. 4712-4724. https://doi.org/10.1021/am400658h
  51. Rane, A.V., Kanny, K., Abitha, V.K., and Thomas S., "Methods for Synthesis of Nanoparticles and Fabrication of Nanocomposites," Synthesis of Inorganic Nanomaterials, Vol. 5, 2018, pp. 121-139.
  52. Sangermanoa, M., Periolatto, M., Signorea, V., and Spena, P.R. "Improvement of the Water-vapor Barrier Properties of an Uvcured Epoxy Coating Containing Graphite Oxide Nanoplatelets," Progress in Organic Coatings, Vol. 103, 2017, pp. 152-155. https://doi.org/10.1016/j.porgcoat.2016.10.032
  53. Zhang, Y., and Park, S.-J., "Imidazolium-optimized Conductive Interfaces in Multilayer Graphene Nanoplatelet/epoxy Composites for Thermal Management Applications and Electroactive Devices," Polymer, Vol. 168, 2019, pp. 53-60. https://doi.org/10.1016/j.polymer.2019.01.086
  54. Cha, J., Kim, J., Ryu, S., and Hong, S.H., "Comparison to Mechanical Properties of Epoxy Nanocomposites Reinforced by Functionalized Carbon Nanotubes and Graphene Nanoplatelets," Composites Part B: Engineering, Vol. 162, 2019, pp. 283-288. https://doi.org/10.1016/j.compositesb.2018.11.011
  55. Moriche, R., Prolongo, S.G., Sanchez, M., Jimenez-Suarez, A., Chamizo, F.J., and Urena, A., "Thermal Conductivity and Lap Shear Strength of GNP/epoxy Nanocomposites Adhesives," International Journal of Adhesion & Adhesives, Vol. 68, 2016, pp. 407-410. https://doi.org/10.1016/j.ijadhadh.2015.12.012
  56. Ramanathan, T., Stankovich, S., Dikin, D. A., Liu, H., Shen, H., Nguyen, S.T., and Brinson, L.C., "Graphitic Nanofillers in PMMA Nanocomposites-An Investigation of Particle Size and Dispersion and Their Influence on Nanocomposite Properties," Journal of Polymer Science Part B : Polymer Physics, Vol. 45, No. 15, 2007, pp. 2097-2112. https://doi.org/10.1002/polb.21187
  57. Hu, H., and Chen, G., "Electrochemically Modified Graphite Nanosheets and Their Nanocomposite Films with Poly(vinyl alcohol)," Polymer Composite, Vol. 31, No. 10, 2010, pp. 1770- 1775. https://doi.org/10.1002/pc.20968
  58. Yang, J., Tian, M., Jia, Q.X., Shi, J.H., Zhang, L.Q., Lim, S.H., Yu, Z.Z., and Mai, Y.W., "Improved Mechanical and Functional Properties of Elastomer/graphite Nanocomposites Prepared by Latex Compounding," Acta Materialia, Vol. 55, No. 18, 2007, pp. 6372-6382. https://doi.org/10.1016/j.actamat.2007.07.043
  59. Kim, H., and Macosko, C.W., "Morphology and Properties of Polyester/Exfoliated Graphite Nanocomposites", Macromolecules, Vol. 41, No. 9, 2008, pp. 3317-3327. https://doi.org/10.1021/ma702385h
  60. Kim, I.H., and Jeong, Y.G., "Polylactide/exfoliated Graphite Nanocomposites with Enhanced Thermal Stability, Mechanical Modulus, and Electrical Conductivity," Journal of Polymer Science: Part B: Polymer Physics, Vol. 48, No. 8, 2010, pp. 850-858. https://doi.org/10.1002/polb.21956
  61. Wang, L., Hong, J., and Chen, G., "Comparison Study of Graphite Nanosheets and Carbon Black as Fillers for High Density Polyethylene," Polymer Engineering and Science, Vol. 50, No. 11, 2010, pp. 2176-2181. https://doi.org/10.1002/pen.21751
  62. Srivastava, N.K., and Mehra, R.M., "Study of Structural, Electrical, and Dielectric Properties of Polystyrene/foliated Graphite Nanocomposite Developed via in situ Polymerization," Journal of Applied Polymer Science, Vol. 109, No. 6, 2008, pp. 3991-3999. https://doi.org/10.1002/app.28499
  63. Kalaitzidou, K., Fukushima, H., and Drzal, L.T., "A New Compounding Method for Exfoliated Graphite-polypropylene Nanocomposites with Enhanced Flexural Properties and Lower Percolation Threshold," Composites Science and Technology, Vol. 67, No. 10, 2007, pp. 2045-2051. https://doi.org/10.1016/j.compscitech.2006.11.014
  64. Wei, K.K., Leng, T.P., Keat, Y.C., Osman, H., and Rasidi, M.S.M., "The Potential of Natural Rubber (NR) in Controlling Morphology in Twomatrix Epoxy/NR/graphene Nano-platelets (GNP) Systems," Polymer Testing, Vol. 77, 2019, pp. 105905. https://doi.org/10.1016/j.polymertesting.2019.105905
  65. Wang, B., Jiang, R., Song, W., and Liu, H., "Controlling Dispersion of Graphene Nanoplatelets in Aqueous Solution by Ultrasonic Technique," Russian Journal of Physical Chemistry A, Vol. 91, No. 8, 2017, pp. 1517-1526. https://doi.org/10.1134/S0036024417080040
  66. Shakir, M.F., Khan, A.N., Khan, R., Javed, S., Tariq, A., Azeem, M., Riaz, A., Shafqat, A., Cheema, H.M., Akram, M.A., Ahmad, I., and Jan, R., "EMI Shielding Properties of polymer blends with inclusion of graphene nano platelets," Results in Physics, Vol. 14, 2019, pp. 102365. https://doi.org/10.1016/j.rinp.2019.102365
  67. Abbaszadeh, M., Krizak, D., Kundu, S., "Layer-by-Layer Assembly of Graphene Oxide Nanoplatelets Embedded Desalination Membranes with Improved Chlorine Resistance," Desalination, Vol. 470, 2019, pp. 114116. https://doi.org/10.1016/j.desal.2019.114116