References
- Yadav, S.K., and Cho, J.W., "Functionalized Graphene Nanoplatelets for Enhanced Mechanical and Thermal Properties of Polyurethane Nanocomposites," Applied Surface Science, Vol. 266, 2013, pp. 360-367. https://doi.org/10.1016/j.apsusc.2012.12.028
- Shao, Y., Zhang, S., Wang, C., Nie, Z., Liu, J., Wang Y., and Lin, Y., "Highly durable Graphene Nanoplatelets Supported Pt Nanocatalysts for Oxygen Reduction," Journal of Power Sources, Vol. 195, No. 15, 2010, pp. 4600-4605. https://doi.org/10.1016/j.jpowsour.2010.02.044
- King, J.A., Klimek, D.R., Miskioglu, I., and Odegard, G.M., "Mechanical Properties of Graphene Nanoplatelet/Epoxy Composites," Journal of Applied Sciences, Vol. 128, No. 6, 2013, pp. 4217-4223.
- Rashada, M., Pana, F., Tang, A., and Asifd, M., "Effect of Graphene Nanoplatelets Addition on Mechanical Properties of Pure Aluminum Using a Semi-powder Method," Progress in Natural Science: Materials International, Vol. 24, No. 2, 2014, pp. 101-108. https://doi.org/10.1016/j.pnsc.2014.03.012
- Prolongo, S.G., Moriche, R., Jimenez-Suarez, A., Sanchez, M., and Urena, A., "Advantages and Disadvantages of the Addition of Graphene Nanoplatelets to Epoxy Resins," European Polymer Journal, Vol. 61, 2014, pp. 206-214. https://doi.org/10.1016/j.eurpolymj.2014.09.022
- Yue, L., Pircheraghi, G., Monemian, S.I., and Manas-Zloczower, I., "Epoxy Composites with Carbon Nanotubes and Graphene Nanoplatelets - Dispersion and Synergy Effects," Carbon, Vol. 78, 2014, pp. 268-278. https://doi.org/10.1016/j.carbon.2014.07.003
- Yarmand, H., Gharehkhani, S., Ahmadi, G., Shirazi, S.F.S., Baradaran, S., Montazer E., Zubir, M.N.M., Alehashem, M.S., Kazi, S.N., and Dahari, M., "Graphene Nanoplatelets-silver Hybrid Nanofluids for Enhanced Heat Transfer," Energy Conversion and Management, Vol. 100, 2015, pp. 419-428. https://doi.org/10.1016/j.enconman.2015.05.023
- Wang, F., Drzal, L.T., Qin, Y., and Huang, Z., "Enhancement of Fracture Toughness, Mechanical and Thermal Properties of Rubber/epoxy Composites by Incorporation of Graphene Nanoplatelets," Composites Part A: Applied Science and Manufacturing, Vol. 87, 2016, pp. 10-22. https://doi.org/10.1016/j.compositesa.2016.04.009
- Iranmanesh, S., Ong, H. C., Ang, B.C., Sadeghinezhad, E., Esmaeilzadeh, A., and Mehrali M., "Thermal Performance Enhancement of an Evacuated Tube Solar Collector Using Graphene Nanoplatelets Nanofluid," Journal of Cleaner Production, Vol. 162, 2016, pp. 121-129. https://doi.org/10.1016/j.jclepro.2017.05.175
- Wang, B., Jiang, R., Song, W., and Liu, H., "Controlling Dispersion of Graphene Nanoplatelets in Aqueous Solution by Ultrasonic Technique," Russian Journal of Physical Chemistry A, Vol. 91, No. 8, 2017, pp. 1517-1526. https://doi.org/10.1134/S0036024417080040
- Sharmaa, A., Narsimhachary, D., Sharma, V.M., Sahoo, B., and Paul, J., "Surface Modification of Al6061-SiC Surface Composite through Impregnation of Graphene, Graphite & Carbon Nanotubes via FSP: A Tribological Study," Surface & Coatings Technology, Vol. 368, 2019, pp. 175-191. https://doi.org/10.1016/j.surfcoat.2019.04.001
- Paszkiewicz, S., Szymczyk, A., Sui, X.M., Wagner, H.D., Linares, A., Ezquerra T.A., and Roslaniec Z., "Synergetic Effect of Single-walled Carbon Nanotubes (SWCNT) and Graphene Nanoplatelets (GNP) in Electrically Conductive PTT-block-PTMO Hybrid Nanocomposites Prepared by in situ Polymerization," Composites Science and Technology, Vol. 118, 2015, pp. 72-77. https://doi.org/10.1016/j.compscitech.2015.08.011
- Chatterjee, S., Nafezarefi, F., Tai, N.H., Schlagenhauf, L., Nuesch, F.A., and Chu, B.T.T., "Size and Synergy Effects of Nanofiller Hybrids Including Graphene Nanoplatelets and Carbon Nanotubes in Mechanical Properties of Epoxy Composites," Carbon, Vol. 50, 2012, pp. 5380-5386. https://doi.org/10.1016/j.carbon.2012.07.021
- Lin, Y., Wood, M., Imasato, K., Kuo, J.J., Lam, D., Mortazavi, N., Slade, T.J., Hodge, S.A., Xi, K., Kanatzidis, M.G., Clarke, D.R., Hersama, M.C., and Snyder, G.J., "Expression of Interfacial Seebeck Coefficient through Grain Boundary Engineering with Multi-Layer Graphene Nanoplatelets," Energy and Environment Science, Vol. 13, No. 11, 2020, pp. 4114-4121. https://doi.org/10.1039/D0EE02490B
- Scaffaro, R., Botta, L., Maio, A., and Gallo, G., "PLA Graphene Nanoplatelets Nanocomposites: Physical Properties and Release Kinetics of an Antimicrobial Agent," Composites Part B: Engineering, Vol. 109, 2017, pp. 138-146. https://doi.org/10.1016/j.compositesb.2016.10.058
- Le, J.L., Du, H., and Pang, S.D., "Use of 2-D Graphene Nanoplatelets (GNP) in Cement Composites for Structural Health Evaluation," Composites Part B: Engineering, Vol. 67, 2014, pp. 555-563. https://doi.org/10.1016/j.compositesb.2014.08.005
- Sun, S., Guo, L., Chang, X., Liu, Y., Niu, S., Lei Y., Liu, T., and Hu, X., "A Wearable Strain Sensor Based on the ZnO/graphene nanoplatelets Nanocomposite with large Linear Working Range," Journal of Materials Science, Vol. 54, No. 9, 2019, pp. 7048-7061. https://doi.org/10.1007/s10853-019-03354-6
- Filippidou, M.K., Tegou, E., Tsouti, V., and Chatzandroulis, S., "A Flexible Strain Sensor Made of Graphene Nanoplatelets/polydimethylsiloxane Nanocomposite," Microelectronic Engineering, Vol. 142, 2015, pp. 7-11. https://doi.org/10.1016/j.mee.2015.06.007
- Kavan, L., Yum, J.H., Nazeeruddin, M.K., Gratzel, M., "Graphene Nanoplatelet Cathode for Co(III)/(II) Mediated Dye-Sensitized Solar Cells," ACS Nano, Vol. 5, No. 11, 2011, pp. 9171-9178. https://doi.org/10.1021/nn203416d
- Jeon, I.Y., Zhang, S., Zhang, L., Choi, H.-J., Seo, J.-M., Xia, Z., Dai, L., and Baek, J.-B., "Edge-Selectively Sulfurized Graphene Nanoplatelets as Efficient Metal-Free Electrocatalysts for Oxygen Reduction Reaction: The Electron Spin Effect," Advanced Matrials, Vol. 25, No. 42, 2013, pp. 6138-6145. https://doi.org/10.1002/adma.201302753
- Xiang, J., and Drzal, L.T., "Templated Growth of Polyaniline on Exfoliated Graphene Nanoplatelets (GNP) and Its Thermoelectric Properties," Polymer, Vol. 53, No. 19, 2012, pp. 4202-4210. https://doi.org/10.1016/j.polymer.2012.07.029
- Kavan, L., Yum, J.-H., and Gratze, M., "Graphene Nanoplatelets Outperforming Platinum as the Electrocatalyst in Co-Bipyridine-Mediated Dye-Sensitized Solar Cells," Nano Letters, Vol. 11, No. 12, 2011, pp. 5501-5506. https://doi.org/10.1021/nl203329c
- Yang, B., Shi, Y., Miao, J.B., Xia, R., Su, L.F., Qian, J.S., Chen, P., Zhang, Q.L., and Liu, J.W., "Evaluation of Rheological and Thermal Properties of Polyvinylidene Fluoride (PVDF)/graphene Nanoplatelets (GNP) Composites," Polymer Testing, Vol. 67, 2018, pp. 122-135. https://doi.org/10.1016/j.polymertesting.2018.02.011
- Watt, E., Abdelwahab, M.A., Snowdon, M.R., Mohanty, A.K., Khalil, H., and Misra, M., "Hybrid Biocomposites from Polypropylene, Sustainable Biocarbon and Graphene Nanoplatelets," Scientific Reports, Vol. 10, No. 1, 2020, pp. 1-13. https://doi.org/10.1038/s41598-019-56847-4
- Alam, F., Choosri, M., Gupta, T.K., Varadarajan, K.M., Choia, D., and Kumar, S., "Electrical, Mechanical and Thermal Properties of Graphene Nanoplatelets Reinforced UHMWPE Nanocomposites," Materials Science & Engineering B, Vol. 241, 2019, pp. 82-91. https://doi.org/10.1016/j.mseb.2019.02.011
- Ahmadi-Moghadam, B., Sharafimasooleh, M., Shadlou, S., and Taheri, F., "Effect of Functionalization of Graphene Nanoplatelets on the Mechanical Response of Graphene/epoxy Composites," Materials & Design, Vol. 66, 2015, pp. 419-428.
- Mehrali, M., Sadeghinezhad, E., Latibari, S.T., Kazi, S.N., Mehrali, M., Zubir, M.N.B.M., and Metselaar, H.S.C., "Investigation of Thermal Conductivity and Rheological Properties of Nanofluids Containing Graphene Nanoplatelets," Nanoscale Research Letter, Vol. 9, No. 1, 2014, pp. 15. https://doi.org/10.1186/1556-276x-9-15
- Qin, W., Vautard, F., Drzal, L.T., and Yu, J., "Mechanical and Electrical Properties of Carbon Fiber Composites with Incorporation of Graphene Nanoplatelets at the Fiber-Matrix Interphase," Composites Part B: Engineering, Vol. 69, 2015, pp. 335-341. https://doi.org/10.1016/j.compositesb.2014.10.014
- Yadav, S.D., Bhingole, P.P., Chaudhari, G.P., Nath, S.K., and Sommitsch, C., "Hybrid Processing of AZ91 Magnesium Alloy/nano-Al2O3 Composites," Key Engineering Materials, Vol. 651-653, 2015, pp. 783-788. https://doi.org/10.4028/www.scientific.net/KEM.651-653.783
- Singh, L.K., Bhadauria, A., and Laha, T., "Comparing the Strengthening Efficiency of Multiwalled Carbon Nanotubes and Graphene Nanoplatelets in Aluminum Matrix," Powder Technology, Vol. 356, 2019, pp. 1059-1076. https://doi.org/10.1016/j.powtec.2019.09.026
- Kamar, N.T., Hossain, M.M., Khomenko, A., Haq, M., Drzal, L.T., and Loos, A., "Interlaminar Reinforcement of Glass Fiber/epoxy Composites with Graphene Nanoplatelets," Composites: Part A, Vol. 70, 2015, pp. 82-92. https://doi.org/10.1016/j.compositesa.2014.12.010
- Al-Hamadani, Y.A.J., Chu, K.H., Son, A., Heo, J., Her, N., Jang, M., Park, C.M., and Yoon, Y., "Stabilization and Dispersion of Carbon Nanomaterials in Aqueous Solutions: A Review," Separation and Purification Technology, Vol. 156, No. 2, 2015, pp. 861-874. https://doi.org/10.1016/j.seppur.2015.11.002
- Huang, Y.Y., and Terentjev, E.M., "Dispersion and Rheology of Carbon Nanotubes in Polymers," International Journal of Material Forming, Vol. 1, No. 2, 2008, pp. 63-74. https://doi.org/10.1007/s12289-008-0376-6
- Ndlwana, L., Motsa, M.M., and Mamba, B.B., "A Unique Method for Dopamine-cross-linked Graphene Nanoplatelets within Polyethersulfone Membranes (GNP-pDA/PES) for Enhanced Mechanochemical Resistance during NF and RO Desalination", European Polymer Journal, Vol. 136, 2020, pp. 109889. https://doi.org/10.1016/j.eurpolymj.2020.109889
- Baig, Z., Mamat, O., Mustapha, M., Mumtaz, A., Munir, K.S., and Sarfraz, M., "Investigation of Tip Sonication Effects on Structural Quality of Graphene Nanoplatelets (GNPs) for Superior Solvent Dispersion," Ultrason Sonochem, Vol. 45, pp. 133-149. https://doi.org/10.1016/j.ultsonch.2018.03.007
- Ma, P.-C., Siddiqui, N.A., Marom, G., and Kim, J.-K., "Dispersion and Functionalization of Carbon Nanotubes for Polymerbased Nanocomposites: A Review," Composites: Part A, Vol. 41, No. 10, 2010, pp. 1345-1367. https://doi.org/10.1016/j.compositesa.2010.07.003
- Paton, K.R., Varrla, E., Backes, C., Smith, R.J., Khan, U., O'Neill, A., Boland, C., Lotya, M., Istrate, O. M., King, P., Higggins, T., Barwich, S., May, P., Puczkarski, P., Ahned, I., Moebius, M., Pettersson, H., Long, E., Coelho, J., O'Brien, S.E., McGuire, E.K., Sanchez, B.M., Duesberg, G.S., McEvoy, N., Pennycook, T.J., Downing, C., Crossley, A., Nicolosi, V., and Coleman, J.N., "Scalable Production of Large Quantities of Defect-free Few-layer Graphene by Shear Exfoliation In Liquids," Nature Materials, Vol. 13, No. 6, 2014, pp. 624-630. https://doi.org/10.1038/nmat3944
- Zhao, R., Han, Y., He, M., and Li, Y., "Grinding Kinetics of Quartz and Chlorite in Wet Ball Milling," Powder Technology, Vol. 305, 2017, pp. 418-425. https://doi.org/10.1016/j.powtec.2016.07.050
- Rishi, A.M., Kandlikar, S.G., and Gupta, A., "Salt Templated and Graphene Nanoplatelets Draped Copper (GNP-draped-Cu) Composites for Dramatic Improvements in Pool Boiling Heat Transfer," Scientific Reports, Vol. 10, No. 1, 2020, pp. 11941. https://doi.org/10.1038/s41598-020-68672-1
- Mao, M., Chen, S., He, P., Zhang, H., and Liu, H., "Facile and Economical Mass Production of Graphene Dispersions and Flakes," Journal of Materials Chemistry A, Vol. 2, No. 12, 2014, pp. 4132-4135. https://doi.org/10.1039/c3ta14632d
- Guo, W., and Chen, C, "Fabrication of Graphene/Epoxy Resin Composites with Much Enhanced Thermal Conductivity via Ball Milling Technique," Journal of Applied Polymer Sciences, Vol. 131, No. 15, 2014, pp. 40565.
- Jung, Y., Stevens, E., Ding, B., Kim, S.-D., Woo, S.-K., and Lee, J.-K., "Microstructure and Electrical Conductivity in Shape and Size Controlled Molybdenum Particle Thick Film," Journal of Materials Science, Vol. 48, No. 10, 2013, pp. 3760-3768. https://doi.org/10.1007/s10853-013-7175-2
- Cha, J., Kim, J., Ryu, S., and Hong, S.H., "Comparison to Mechanical Properties of Epoxy Nanocomposites Reinforced by Functionalized Carbon Nanotubes and Graphene Nanoplatelets," Composites Part B: Engineering, Vol. 162, 2019, pp. 283-288. https://doi.org/10.1016/j.compositesb.2018.11.011
- Cataldo, A., Biagetti, G., Mencarelli, D., Micciulla, F., Crippa, P., Turchetti, C., Pierantoni, L., and Bellucci, S., "Modeling and Electrochemical Characterization of Electrodes Based on Epoxy Composite with Functionalized Nanocarbon Fillers at High Concentration," Nanomaterials, Vol. 10, No. 5, 2020, pp. 850. https://doi.org/10.3390/nano10050850
- Che, W.M., Teh, P.L., Jalilah, A.J., and Yeoh, C.K., "The Effect of the GNP-SDS Loadings on the Properties of the NRL/GNPSDS Composites," Materials Science and Engineering, Vol. 864, No. 1, 2020, pp. 012140.
- Shazali, S.S., Amiri, A., Zubir, M.N.M., Rozali, S., Zabri, M.Z., Sabri, M.F.M., and Soleymaniha, M., "Investigation of the Thermophysical Properties and Stability Performance of Noncovalently Functionalized Graphene Nanoplatelets with Pluronic P-123 in Different Solvents," Materials Chemistry and Physics, Vol. 206, 2018, pp. 94-102. https://doi.org/10.1016/j.matchemphys.2017.12.008
- Simon, T., Potara, M., Gabudean, A.-M., Licarete, E., Banciu, M., and Astilean, S., "Designing Theranostic Agents Based on Pluronic Stabilized Gold Nanoaggregates Loaded with Methylene Blue for Multimodal Cell Imaging and Enhanced Photodynamic Therapy," ACS Applied Materials & Interfaces, Vol. 7, No. 30, 2015, pp. 16191-16201. https://doi.org/10.1021/acsami.5b04734
- Manta, A., Gresil, M., and Soutis, C., "Infrared Thermography for Void Mapping of a Graphene/epoxy Composite and Its Full‐field Thermal Simulation," Fatigue & Fracture of Engineering Materials, Vol. 42, No. 7, 2019, pp. 1441-1453. https://doi.org/10.1111/ffe.12980
- Ajorloo, M., Fasihi, M., Ohshima, M., and Taki, K., "How are the Thermal Properties of Polypropylene/graphene Nanoplatelet Composites Affected by Polymer Chain Configuration and Size of Nanofiller?," Materials and Design, Vol. 181, 2019, pp. 108068. https://doi.org/10.1016/j.matdes.2019.108068
- Maiti, S., Shrivastava, N.K., Suin, S., and Khatua, B.B., "Polystyrene/MWCNT/Graphite Nanoplate Nanocomposites: Efficient Electromagnetic Interference Shielding Material through Graphite Nanoplate−MWCNT−Graphite Nanoplate Networking," ACS Applied Materials & Interfaces, Vol. 5, No. 11, 2013, pp. 4712-4724. https://doi.org/10.1021/am400658h
- Rane, A.V., Kanny, K., Abitha, V.K., and Thomas S., "Methods for Synthesis of Nanoparticles and Fabrication of Nanocomposites," Synthesis of Inorganic Nanomaterials, Vol. 5, 2018, pp. 121-139.
- Sangermanoa, M., Periolatto, M., Signorea, V., and Spena, P.R. "Improvement of the Water-vapor Barrier Properties of an Uvcured Epoxy Coating Containing Graphite Oxide Nanoplatelets," Progress in Organic Coatings, Vol. 103, 2017, pp. 152-155. https://doi.org/10.1016/j.porgcoat.2016.10.032
- Zhang, Y., and Park, S.-J., "Imidazolium-optimized Conductive Interfaces in Multilayer Graphene Nanoplatelet/epoxy Composites for Thermal Management Applications and Electroactive Devices," Polymer, Vol. 168, 2019, pp. 53-60. https://doi.org/10.1016/j.polymer.2019.01.086
- Cha, J., Kim, J., Ryu, S., and Hong, S.H., "Comparison to Mechanical Properties of Epoxy Nanocomposites Reinforced by Functionalized Carbon Nanotubes and Graphene Nanoplatelets," Composites Part B: Engineering, Vol. 162, 2019, pp. 283-288. https://doi.org/10.1016/j.compositesb.2018.11.011
- Moriche, R., Prolongo, S.G., Sanchez, M., Jimenez-Suarez, A., Chamizo, F.J., and Urena, A., "Thermal Conductivity and Lap Shear Strength of GNP/epoxy Nanocomposites Adhesives," International Journal of Adhesion & Adhesives, Vol. 68, 2016, pp. 407-410. https://doi.org/10.1016/j.ijadhadh.2015.12.012
- Ramanathan, T., Stankovich, S., Dikin, D. A., Liu, H., Shen, H., Nguyen, S.T., and Brinson, L.C., "Graphitic Nanofillers in PMMA Nanocomposites-An Investigation of Particle Size and Dispersion and Their Influence on Nanocomposite Properties," Journal of Polymer Science Part B : Polymer Physics, Vol. 45, No. 15, 2007, pp. 2097-2112. https://doi.org/10.1002/polb.21187
- Hu, H., and Chen, G., "Electrochemically Modified Graphite Nanosheets and Their Nanocomposite Films with Poly(vinyl alcohol)," Polymer Composite, Vol. 31, No. 10, 2010, pp. 1770- 1775. https://doi.org/10.1002/pc.20968
- Yang, J., Tian, M., Jia, Q.X., Shi, J.H., Zhang, L.Q., Lim, S.H., Yu, Z.Z., and Mai, Y.W., "Improved Mechanical and Functional Properties of Elastomer/graphite Nanocomposites Prepared by Latex Compounding," Acta Materialia, Vol. 55, No. 18, 2007, pp. 6372-6382. https://doi.org/10.1016/j.actamat.2007.07.043
- Kim, H., and Macosko, C.W., "Morphology and Properties of Polyester/Exfoliated Graphite Nanocomposites", Macromolecules, Vol. 41, No. 9, 2008, pp. 3317-3327. https://doi.org/10.1021/ma702385h
- Kim, I.H., and Jeong, Y.G., "Polylactide/exfoliated Graphite Nanocomposites with Enhanced Thermal Stability, Mechanical Modulus, and Electrical Conductivity," Journal of Polymer Science: Part B: Polymer Physics, Vol. 48, No. 8, 2010, pp. 850-858. https://doi.org/10.1002/polb.21956
- Wang, L., Hong, J., and Chen, G., "Comparison Study of Graphite Nanosheets and Carbon Black as Fillers for High Density Polyethylene," Polymer Engineering and Science, Vol. 50, No. 11, 2010, pp. 2176-2181. https://doi.org/10.1002/pen.21751
- Srivastava, N.K., and Mehra, R.M., "Study of Structural, Electrical, and Dielectric Properties of Polystyrene/foliated Graphite Nanocomposite Developed via in situ Polymerization," Journal of Applied Polymer Science, Vol. 109, No. 6, 2008, pp. 3991-3999. https://doi.org/10.1002/app.28499
- Kalaitzidou, K., Fukushima, H., and Drzal, L.T., "A New Compounding Method for Exfoliated Graphite-polypropylene Nanocomposites with Enhanced Flexural Properties and Lower Percolation Threshold," Composites Science and Technology, Vol. 67, No. 10, 2007, pp. 2045-2051. https://doi.org/10.1016/j.compscitech.2006.11.014
- Wei, K.K., Leng, T.P., Keat, Y.C., Osman, H., and Rasidi, M.S.M., "The Potential of Natural Rubber (NR) in Controlling Morphology in Twomatrix Epoxy/NR/graphene Nano-platelets (GNP) Systems," Polymer Testing, Vol. 77, 2019, pp. 105905. https://doi.org/10.1016/j.polymertesting.2019.105905
- Wang, B., Jiang, R., Song, W., and Liu, H., "Controlling Dispersion of Graphene Nanoplatelets in Aqueous Solution by Ultrasonic Technique," Russian Journal of Physical Chemistry A, Vol. 91, No. 8, 2017, pp. 1517-1526. https://doi.org/10.1134/S0036024417080040
- Shakir, M.F., Khan, A.N., Khan, R., Javed, S., Tariq, A., Azeem, M., Riaz, A., Shafqat, A., Cheema, H.M., Akram, M.A., Ahmad, I., and Jan, R., "EMI Shielding Properties of polymer blends with inclusion of graphene nano platelets," Results in Physics, Vol. 14, 2019, pp. 102365. https://doi.org/10.1016/j.rinp.2019.102365
- Abbaszadeh, M., Krizak, D., Kundu, S., "Layer-by-Layer Assembly of Graphene Oxide Nanoplatelets Embedded Desalination Membranes with Improved Chlorine Resistance," Desalination, Vol. 470, 2019, pp. 114116. https://doi.org/10.1016/j.desal.2019.114116