DOI QR코드

DOI QR Code

Unreported Post-harvest Disease of Apples Caused by Plenodomus collinsoniae in Korea

  • Das, Kallol (School of Applied Biosciences, Kyungpook National University) ;
  • Kim, Yeong-Hwan (School of Applied Biosciences, Kyungpook National University) ;
  • Yoo, Jingi (Tree Fruit Research and Extension Center, Washington State University) ;
  • Ten, Leonid N. (School of Applied Biosciences, Kyungpook National University) ;
  • Kang, Sang-Jae (School of Applied Biosciences, Kyungpook National University) ;
  • Kang, In-Kyu (Department of Horticultural Science, Kyungpook National University) ;
  • Lee, Seung-Yeol (School of Applied Biosciences, Kyungpook National University) ;
  • Jung, Hee-Young (School of Applied Biosciences, Kyungpook National University)
  • Received : 2020.11.02
  • Accepted : 2020.12.21
  • Published : 2020.12.31

Abstract

This study was conducted to isolate and identify the fungal pathogen caused unreported post-harvest disease on apples (cv. Fuji) fruit in Korea. The disease symptoms on apples appeared as irregular, light to dark brown, slightly sunken spots. The three fungal strains were isolated from infected tissues of apple fruits and their cultural and morphological characteristics were completely consistent with those of Plenodomus collinsoniae. The phylogenetic analysis using the internal transcribed spacer (ITS) regions, beta-tubulin (TUB), and the second largest subunit of RNA polymerase II (RPB2) sequences revealed the closest relationship of the isolates with Plenodomus collinsoniae at the species level. The pathogenicity test showed the same dark brown spots on Fuji apple cultivar. Therefore, P. collinsoniae is a newly reported fungal agent causing post-harvest disease on apples in Korea.

Keywords

References

  1. Arseneault MH, Cline JA. A review of apple preharvest fruit drop and practices for horticultural management. Sci Hortic 2016;211:40-52. https://doi.org/10.1016/j.scienta.2016.08.002
  2. FAOSTAT. Food and agricultural organization statistical database. Rome: FAOSTAT; 2017.
  3. Sansavini S, Donati F, Costa F, Tartarini S. Advances in apple breeding for enhanced fruit quality and resistance to biotic stresses: New varieties for the European market. J Fruit Ornam Plant Res 2004;12:13-52.
  4. The Korean Society of Plant Pathology. List of plant diseases in Korea. 5th ed. Seoul: Korean Society of Plant Pathology; 2009.
  5. Cheon W, Jeon Y. Survey of major diseases occurred on apple in northern Gyeongbuk from 2013 to 2014. Res Plant Dis 2015;21:261-7. https://doi.org/10.5423/RPD.2015.21.4.261
  6. Lee DH, Kim D, Jeon Y, Uhm JY, Hong SB. Molecular and cultural characterization of Colletotrichum spp. causing bitter rot of apples in Korea. Plant Pathol J 2007;23:37-44. https://doi.org/10.5423/PPJ.2007.23.2.037
  7. Uhm JY. Reduced fungicide spray program for major apple diseases Korea. Anyang: Agriculture and Horticulture Press; 2010.
  8. Back CG, Jung HY. Biological characterization of Marssonina coronaria infecting apple trees in Korea. Kor J Mycol 2014;42:183-90. https://doi.org/10.4489/KJM.2014.42.3.183
  9. Lee SY, Park SJ, Lee JJ, Back CG, Ten LN, Kang IK, Jung HY. First report of fruit rot caused by Fusarium decemcellulare in apples in Korea. Kor J Mycol 2017;45:54-62. https://doi.org/10.4489/KJM.20170006
  10. Phookamsak R, Hyde KD, Jaewon R, Bhat DJ, Jones EBG, Maharachchikumbura SSN, Rasoe O, Karunarathna SC, Wanasinghe DN, Hongsanan S, et al. Fungal divers notes 929-1035: Taxonomic and phylogenetic contributions on genera and species of fungi. Fungal Divers 2019;95:1-273. https://doi.org/10.1007/s13225-019-00421-w
  11. Marin-Felix Y, Groenewold JZ, Cai L, Chen Q, Marincawitz S, Barnes L, Braun U, Camporesi E, Damm U, de Beer ZW, et al. Genera of phytopathogenic fungi: GOPHY 1. Stud Mycol 2017;86:99-216. https://doi.org/10.1016/j.simyco.2017.04.002
  12. Moe TN, Das K, Kang IK, Lee SY, Jung HY. Morphological and phylogeny of Plenodomus sinensis and P. collinsoniae, two unreported species isolated from soil in Korea. Kor J Mycol 2020;48:187-95. https://doi.org/10.4489/KJM.20200020
  13. De Gruyter J, Woudenberg JHC, Aveskamp MM, Verkley GJM, Groenewald JZ, Crous PW. Redisposition of Phoma like anamorphs in Pleosporales. Stud Mycol 2013;75:1-36. https://doi.org/10.3114/sim0004
  14. Gardes M, Bruns T. ITS primers with enhanced specificity for basidiomycetes-application to the identification of mycorrhizae and rusts. Mol Ecol 1993;2:113-8. https://doi.org/10.1111/j.1365-294X.1993.tb00005.x
  15. White TJ, Bruns T, Lee S, Taylor JW. Amplification and direct sequencing of fungal ribosomal RNA genes for phylogenetics. Innis MA, Gelfand DH, Sninsky JJ, White TJ, editors. PCR Protocols: A guide to methods and applications. San Diego: Academic Press; 1990. p. 315-22.
  16. Woudenberg JH, Aveskamp MM, de Gruyter J, Spiers AG, Crous PW. Multiple Didymella teleomorphs are linked to the Phoma clematidina morphotype. Persoonia 2009;22:56-62. https://doi.org/10.3767/003158509X427808
  17. Liu YJ, Whelen S, Hall BD. Phylogenetic relationships among ascomycetes: evidence from an RNA Polymerase II subunit. Mol Biol Evol 1999;16:1799-808. https://doi.org/10.1093/oxfordjournals.molbev.a026092
  18. Saitou N, Nei M. The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol 1987;4:406-25.
  19. Felsenstein J. Evolutionary trees from DNA sequences: A maximum likelihood approach. J Mol Evol 1981;17:368-76. https://doi.org/10.1007/BF01734359
  20. Fitch WM. Toward defining the course of evolution: Minimum change for a specific tree topology. Syst Zool 1971;20:406-16. https://doi.org/10.2307/2412116
  21. Kumar S, Stecher G, Tamura K. MEGA7: Molecular evolutionary genetics analysis version 7.0 for bigger datasets. Mol Biol Evol 2016;33:1870-4. https://doi.org/10.1093/molbev/msw054
  22. Kimura M. A simple method for estimating evolutionary rates of base substitutions through comparative studies of nucleotide sequences. J Mol Evol 1980;16:111-20. https://doi.org/10.1007/BF01731581
  23. Farr DF, Rossman AY. Fungal databases, systematic mycology and microbiology laboratory. Maryland: ARS, USDA; 2017.
  24. Index Fungorum. Index Fungorum [Internet]. Kew: Royal Botanic Gardens Kew; 2020 [cited 2020 Apr 20]. Available from: http://www.indexfungorum.org.
  25. Sanfordg B. A root rot of sweet clover and related crops caused by Plenodomus meliloti Dearness and Sanford. Can J Res 1933;8:337-48. https://doi.org/10.1139/cjr33-030
  26. Torres MS, Bergen M, Singh S, Bischoff J, Sullivan RF, White Jr JE. Plenodomus morganjonesii sp. nov. and a discussion of the genus Plenodomus. Mycotaxon 2005;93:333-44.
  27. Khodaei S, Arzanlou M, Pertot I. Multigene phylogeny and morphology reveals novel records and hosts for coelomycetous fungi in Iran. Nova Hedwigia 2020;110:157-73. https://doi.org/10.1127/nova_hedwigia/2020/0567
  28. Gai Y, Ma H, Chen X, Zheng J, Chen H, Li H. Stem blight, foot rot and storage tuber rot of sweet potato caused by Plenodomus destruens in China. J Gen Plant Pathol 2016;82:181-5. https://doi.org/10.1007/s10327-016-0661-z
  29. Tennakoon DS, Phookamsak R, Wanasinghe DN, Yang JB, Lumyong S, Hyde KD. Morphological and phylogenetic insights resolve Plenodomus sinensis (Leptosphaeriaceae) as a new species. Phytotaxa 2017;324:73-82. https://doi.org/10.11646/phytotaxa.324.1.5
  30. Wunsch MJ, Dillon MA, Torres R, Schwartz HF, Bergstrom GC. First report of brown root rot of alfalfa caused by Phoma sclerotioides in Colorado and New Mexico. Plant Dis 2008;92:653.
  31. Paul NC, Nam SS, Park W, Yang JW, Kachroo A. First report of storage tuber rot in sweet potato (Ipomoea batatas) caused by Plenodomus destruens in Korea. Plant Dis 2019;103:1020.