DOI QR코드

DOI QR Code

Development and Application of a Cleaved Amplified Polymorphic Sequence Marker for Discriminating A Mating Type Alleles of Lentinula edodes

표고 A 교배형 구분을 위한 CAPS 마커의 개발 및 적용

  • Park, Mi-Jeong (Division of Special Forest Products, Department of Forest Bioresources, National Institute of Forest Science) ;
  • Ryoo, Rhim (Division of Special Forest Products, Department of Forest Bioresources, National Institute of Forest Science) ;
  • Jang, Yeongseon (Division of Special Forest Products, Department of Forest Bioresources, National Institute of Forest Science) ;
  • Ka, Kang-Hyeon (Division of Special Forest Products, Department of Forest Bioresources, National Institute of Forest Science)
  • 박미정 (국립산림과학원 산림생명자원연구부 산림소득자원연구과) ;
  • 유림 (국립산림과학원 산림생명자원연구부 산림소득자원연구과) ;
  • 장영선 (국립산림과학원 산림생명자원연구부 산림소득자원연구과) ;
  • 가강현 (국립산림과학원 산림생명자원연구부 산림소득자원연구과)
  • Received : 2020.12.14
  • Accepted : 2020.12.17
  • Published : 2020.12.31

Abstract

Lentinula edodes is one of the most widely consumed edible mushrooms in Korea. Mating in L. edodes is regulated by a tetrapolar system, and two unlinked genetic loci, A and B, are known to be major determinants of the mating types, as reported in other heterothallic basidiomycetes. The A locus of L. edodes encodes a pair of homeodomain (HD) transcription factors. The highly variable N-termini of these HD transcription factors contribute to the diversity among the A mating types. In this study, we developed a cleaved amplified polymorphic sequence (CAPS) marker to discriminate 11 different A mating type alleles predominant among both cultivated and wild strains. Amplification of the variable region of the A locus followed by digestion with HaeIII and EcoRI restriction enzymes enabled successful discrimination among the 11 A mating type alleles. We also evaluated the applicability of this method in the identification of two A mating types of a dikaryotic strain.

표고는 한국에서 가장 많이 소비되는 식용버섯 중 하나이다. 표고는 사극성의 교배계를 따르며, 표고의 교배형은 자웅이주성의 다른 담자균류와 마찬가지로 서로 독립적인 두 유전자좌, A와 B에 의해 결정된다. 표고의 A 유전자좌에는 한 쌍의 homeodomain (HD) 전사인자가 암호화되어 있으며 이들의 N말단에서 나타나는 높은 변이가 A 교배형의 다양성에 중요한 것으로 알려져 있다. 본 연구에서는 표고 품종과 야생종에서 많이 발견되는 11종의 A 교배형을 구분할 수 있는 CAPS 마커를 개발하고자 하였다. A 유전자좌에서 변이가 큰 부분을 PCR을 통해 증폭한 뒤 두 가지 제한효소 HaeIII와 EcoRI로 절단하여 DNA 단편의 크기 및 양상을 살펴봄으로써 11종의 A 교배형을 서로 구별할 수 있었다. 또한 해당 방법이 이핵균주의 교배형을 확인하는 데 활용할 수 있는지도 살펴보았다.

Keywords

Acknowledgement

This work was supported by the Golden Seed Project of 'Breeding of new strains of shiitake for cultivar protection and substitution of import [213007-05-4-SBH10]' provided by the Ministry of Agriculture, Food and Rural Affairs, Ministry of Oceans and Fisheries, Rural Development Administration and Korea Forest Service.

References

  1. Frankel C, Ellingboe AH. Sexual incompatibility factors and somatic recombination in Schizophyllum commune. Genetics 1977;85:427-37. https://doi.org/10.1093/genetics/85.3.427
  2. Kues U. Life history and developmental processes in the basidiomycete Coprinus cinereus. Microbiol Mol Biol Rev 2000;64:316-53. https://doi.org/10.1128/MMBR.64.2.316-353.2000
  3. Fox HM, Burden J, Chang ST, Peberdy JF. Mating-type incompatibility between commercial strains of Lentinula edodes. Exp Mycol 1994;18:95-102. https://doi.org/10.1006/emyc.1994.1011
  4. Raudaskoski M, Kothe E. Basidiomycete mating type genes and pheromone signaling. Eukaryot Cell 2010;9:847-59. https://doi.org/10.1128/EC.00319-09
  5. Kues U. From two to many: multiple mating types in Basidiomycetes. Fungal Biol Rev 2015;29:126-66. https://doi.org/10.1016/j.fbr.2015.11.001
  6. Casselton LA, Olesnicky NS. Molecular genetics of mating recognition in basidiomycete fungi. Microbiol Mol Biol Rev 1998;62:55-70. https://doi.org/10.1128/mmbr.62.1.55-70.1998
  7. Au CH, Wong MC, Bao D, Zhang M, Song C, Song W, Law PT, Kues U, Kwan HS. The genetic structure of the A mating-type locus of Lentinula edodes. Gene 2014;535:184-90. https://doi.org/10.1016/j.gene.2013.11.036
  8. Ha B, Kim S, Kim M, Moon YJ, Song Y, Ryu JS, Ryu H, Ro HS. Diversity of A mating type in Lentinula edodes and mating type preference in the cultivated strains. J Microbiol 2018;56:416-25. https://doi.org/10.1007/s12275-018-8030-6
  9. Niculita-Hirzel H, Labbé J, Kohler A, Tacon F, Martin F, Sanders IR, Kues U. Gene organization of the mating type regions in the ectomycorrhizal fungus Laccaria bicolor reveals distinct evolution between the two mating type loci. New Phytol 2008;180:329-42. https://doi.org/10.1111/j.1469-8137.2008.02525.x
  10. Timothy YJ, Shian-Ren L, Rytas V. The genetic structure and diversity of the A and B mating-type genes from the tropical oyster mushroom, Pleurotus djamor. Fungal Genet Biol 2004;41:813-25. https://doi.org/10.1016/j.fgb.2004.04.005
  11. Banham AH, Asante-Owusu RN, Gottgens B, Thompson S, Kingsnorth CS, Mellor E, Casselton LA. An N-terminal dimerization domain permits homeodomain proteins to choose compatible partners and initiate sexual development in the mushroom Coprinus cinereus. Plant Cell 1995;7:773-83. https://doi.org/10.1105/tpc.7.6.773
  12. Kamper J, Reichmann M, Romeis T, Bolker M, Kahmann R. Multiallelic recognition: Nonself-dependent dimerization of the bE and bW homeodomain proteins in Ustilago maydis. Cell 1995;81:73-83. https://doi.org/10.1016/0092-8674(95)90372-0
  13. Spit A, Hyland RH, Mellor EJC, Casselton LA. A role for heterodimerization in nuclear localization of a homeodomain protein. Proc Nat Acad Sci USA 1998;95:6228-33. https://doi.org/10.1073/pnas.95.11.6228
  14. Kunihisa M, Fukino N, Matsumoto S. Development of cleavage amplified polymorphic sequence (CAPS) markers for identification of strawberry cultivars. Euphytica 2003;134:209-15. https://doi.org/10.1023/B:EUPH.0000003884.19248.33
  15. Konieczny A, Ausubel FM. A procedure for mapping Arabidopsis mutations using co-dominant ecotype-specific PCR-based markers. Plant J 1993;4:403-10. https://doi.org/10.1046/j.1365-313X.1993.04020403.x
  16. Moon S, Lee HY, Kim M, Ka KH, Ko HK, Chung JW, Koo CD, Ryu H. Development of cleaved amplified polymorphic sequence markers for the identification of Lentinula edodes cultivars Sanmaru 1ho and Chunjang 3ho. Kor J Mycol 2017;45:114-20. https://doi.org/10.4489/KJM.20170014
  17. Moon S, Lee HY, Ka KH, Koo CD, Ryu H. Development of a CAPS marker for the identification of the Lentinula edodes cultivar, 'Sanmaru 2ho'. J Mushrooms 2018;16:51-6.
  18. Cheng S, Lin F, Xu X, Li A, Lin F. Genetic analysis of segregation distortion of mating-type factors in Lentinula edodes. Prog Nat Sci 2005;15:684-8. https://doi.org/10.1080/10020070512331342760
  19. Cheng S, Lin F. Genetic analysis of distorted segregation ratio of mating types among basidiospores in Lentinula edodes. Agr Sci China 2008;7:415-22. https://doi.org/10.1016/S1671-2927(08)60084-X
  20. Tokimoto K, Komatsu M, Takemaru T. Incompatibility factors in the natural population of Lentinus edodes in Japan. Rep Tottori Mycol Inst Jpn 1973;10:371-6.
  21. Lin F, Wang Z, Sun Y, Cai Y. Analysis of the mating-type factors in natural population of Lentinula edodes in China. Mycosystema 2003;22:235-40. https://doi.org/10.3969/j.issn.1672-6472.2003.02.012
  22. James TY. Ancient yet fast: rapid evolution of mating genes and mating systems in fungi. In: Singh RS, Xu J, Kulathinal RJ, editors. Rapidly evolving genes and genetic systems. Oxford: Oxford University Press; 2012. p. 187-200.