DOI QR코드

DOI QR Code

수 환경 분야에서의 딥러닝 모델 적용사례

Deep learning model in water-environment field

  • 표종철 (울산과학기술원 도시환경공학부) ;
  • 박상훈 (울산과학기술원 도시환경공학부) ;
  • 조경화 (울산과학기술원 도시환경공학부) ;
  • 백상수 (울산과학기술원 도시환경공학부)
  • Pyo, Jongcheol (Urban and Environmental Engineering, Ulsan National Institute of Science and Technology) ;
  • Park, Sanghun (Urban and Environmental Engineering, Ulsan National Institute of Science and Technology) ;
  • Cho, Kyung-Hwa (Urban and Environmental Engineering, Ulsan National Institute of Science and Technology) ;
  • Baek, Sang-Soo (Urban and Environmental Engineering, Ulsan National Institute of Science and Technology)
  • 투고 : 2020.08.14
  • 심사 : 2020.11.18
  • 발행 : 2020.12.15

초록

Deep learning models, which imitate the function of human brain, have drawn attention from many engineering fields (mechanical, agricultural, and computer engineering etc). The major advantages of deep learning in engineering fields can be summarized by objects detection, classification, and time-series prediction. As well, it has been applied into environmental science and engineering fields. Here, we compiled our previous attempts to apply deep learning models in water-environment field and presented the future opportunities.

키워드

과제정보

이 논문은 정부(미래창조과학부)의 재원으로 한국연구재단의 지원을 받아 수행된 해양극지 기초 원천기술 개발 사업임 (NRF-2016M1A5A1027457)

참고문헌

  1. Alverson, A.J., Manoylov, K.M., and Stevenson, R.J. (2003). Laboratory sources of error for algal community attributes during sample preparation and counting, J. Appl. Phycol., 15(5), 357-369. https://doi.org/10.1023/A:1026009724797
  2. Arroyo, M.D.M.D., Hornedo, R.M.D.I., Peralta, F.A., Almestre, C.R., and Sanchez, J.V.M. (2014). Heavy metals concentration in soil, plant, earthworm and leachate from poultry manure applied to agricultural land, Rev. Int. de Contam. Ambient., 30(1), 43-50.
  3. Baek, S.S., Pyo, J., Pachepsky, Y., Park, Y., Ligaray, M., Ahn, C.Y., Kim, Y.H., Chun, J.A., and Cho, K.H. (2020). Identification and enumeration of cyanobacteria species using a deep neural network, Ecol. Indic., 115, 106395. https://doi.org/10.1016/j.ecolind.2020.106395
  4. Cheung, M.Y., Liang, S., and Lee, J. (2013). Toxin-producing cyanobacteria in freshwater: a review of the problems, impact on drinking water safety, and efforts for protecting public health, Res. J. Microbiol., 51(1), 1-10.
  5. Ciresan, D.C., Meier, U., and Schmidhuber, J. (2012). "Transfer learning for Latin and Chinese characters with deep neural networks", The 2012 international joint conference on neural networks (IJCNN)(pp. 1-6), IEEE., Brisbane, Australia.
  6. Faridirad, F., Zourmand, Z., Kasiri, N., Moghaddam, M.K., and Mohammadi, T. (2014). Modeling of suspension fouling in nanofiltration, Desalination, 346, 80-90. https://doi.org/10.1016/j.desal.2014.05.014
  7. Girshick, R. (2015). Fast R-CNN object detection with Caffe, Microsoft Research.
  8. Hoek, E.M., Kim, A.S., and Elimelech, M. (2002). Influence of crossflow membrane filter geometry and shear rate on colloidal fouling in reverse osmosis and nanofiltration separations, Environ. Eng. Sci., 19(6), 357-372. https://doi.org/10.1089/109287502320963364
  9. Ho, C.C., and Zydney, A.L. (2000). A combined pore blockage and cake filtration model for protein fouling during microfiltration, J. Colloid Interface Sci., 232(2), 389-399. https://doi.org/10.1006/jcis.2000.7231
  10. Kemper, T. and Sommer, S. (2002). Estimate of heavy metal contamination in soils after a mining accident using reflectance spectroscopy, Environ. Sci. Technol., 36(12), 2742-2747. https://doi.org/10.1021/es015747j
  11. Krizhevsky, A., Sutskever, I., and Hinton, G.E. (2012). "Imagenet classification with deep convolutional neural networks", Advances in neural information processing systems(pp. 1097-1105), NIPS, Nevada, Unisted States.
  12. Le, C.F., Li, Y.M., Zha, Y., Sun, D., and Yin, B. (2009). Validation of a quasi-analytical algorithm for highly turbid eutrophic water of Meiliang Bay in Taihu Lake, China, IEEE Trans Geosci Remote Sens, 47(8), 2492-2500. https://doi.org/10.1109/TGRS.2009.2015658
  13. Liu, G., Tao, L., Liu, X., Hou, J., Wang, A., and Li, R. (2013). Heavy metal speciation and pollution of agricultural soils along Jishui River in non-ferrous metal mine area in Jiangxi Province, China, J. Geochem. Explor, 132, 156-163. https://doi.org/10.1016/j.gexplo.2013.06.017
  14. Mikolov, T., Kombrink, S., Burget, L., Cernocky, J., and Khudanpur, S. (2011). Extensions of recurrent neural network language model. In 2011 IEEE international conference on acoustics, speech and signal processing (ICASSP) (pp. 5528-5531). IEEE.
  15. Paerl, H.W., and Huisman, J. (2009). Climate change: a catalyst for global expansion of harmful cyanobacterial blooms, Environ. Microbiol. Rep., 1(1), 27-37. https://doi.org/10.1111/j.1758-2229.2008.00004.x
  16. Pandit, C.M., Filippelli, G.M., and Li, L. (2010). Estimation of heavy-metal contamination in soil using reflectance spectroscopy and partial least-squares regression, Int. J. Remote Sens., 31(15), 4111-4123. https://doi.org/10.1080/01431160903229200
  17. Park, S., Baek, S.S., Pyo, J., Pachepsky, Y., Park, J., and Cho, K.H. (2019). Deep neural networks for modeling fouling growth and flux decline during NF/RO membrane filtration, J. Membr. Sci., 587, 117164. https://doi.org/10.1016/j.memsci.2019.06.004
  18. Pyo, J., Duan, H., Baek, S., Kim, M.S., Jeon, T., Kwon, Y.S., Lee, H., and Cho, K.H. (2019). A convolutional neural network regression for quantifying cyanobacteria using hyperspectral imagery, Remote Sens. Environ., 233, 111350. https://doi.org/10.1016/j.rse.2019.111350
  19. Pyo, J., Hong, S., Kwon, Y., Kim, M.S., and Cho, K.H. (2020). Estimation of heavy metals using deep neural network with visible and infrared spectroscopy of soil, Sci. Total Environ., 140162. https://doi.org/10.1016/j.scitotenv.2020.140162
  20. Shi, T., Chen, Y., Liu, Y., and Wu, G. (2014). Visible and near-infrared reflectance spectroscopy-An alternative for monitoring soil contamination by heavy metals, J. Hazard. Mater., 265, 166-176. https://doi.org/10.1016/j.jhazmat.2013.11.059
  21. Simis, S.G., Peters, S.W., and Gons, H.J. (2005). Remote sensing of the cyanobacterial pigment phycocyanin in turbid inland water, Limnol. Oceanogr, 50(1), 237-245. https://doi.org/10.4319/lo.2005.50.1.0237
  22. Wei, L., Yuan, Z., Yu, M., Huang, C., and Cao, L. (2019). Estimation of arsenic content in soil based on laboratory and field reflectance spectroscopy, Sensors, 19(18), 3904. https://doi.org/10.3390/s19183904
  23. Wu, J., He, C., Jiang, X., and Zhang, M. (2011). Modeling of the submerged membrane bioreactor fouling by the combined pore constriction, pore blockage and cake formation mechanisms, Desalination, 279(1-3), 127-134. https://doi.org/10.1016/j.desal.2011.05.069