DOI QR코드

DOI QR Code

Three-dimensional Numerical Simulation of Driftwood Accumulation and Behavior Around Bridge Piers

교각 주변 유목 집적 및 거동 특성 3차원 수치모의

  • Park, Moonhyeong (Department of Land, Water and Environment Research, Korea Institute of Civil Engineering and Building Technology) ;
  • Kim, Hyung Suk (Department of Civil Engineering, Kunsan National University)
  • 박문형 (한국건설기술연구원 국토보전연구본부) ;
  • 김형석 (군산대학교 토목공학과)
  • Received : 2020.11.25
  • Accepted : 2020.12.05
  • Published : 2020.12.31

Abstract

The prediction and evaluation of driftwood accumulation around river-crossing structures are essential because driftwood accumulation increases during flood disasters. In this study, the driftwood accumulation and behavior around bridge piers were evaluated via a numerical model that could be employed to analyze three-dimensional turbulent flow and driftwood motion. The moving particle semi-implicit-based model for driftwood motion was sensitive to the number of spheres. The numerical results showed that the approach velocity and the ratio of driftwood length to pier width were the key factors influencing driftwood accumulation, whereas the driftwood density had only a minor influence. Overall, it is expected that this study will contribute to the development of improved risk evaluation indexes for assessing driftwood accumulation around river-crossing structures.

홍수 시 하천횡단구조물 주변에 유송잡물들이 집적되어 수재해로 인한 피해 가능성이 증가하기 때문에 이에 대한 예측기술 및 검토가 필요하다. 본 연구에서는 3차원 흐름과 유목 거동을 해석할 수 수치모형을 활용하여 교각 주변에서 유목의 집적 및 거동 특성을 검토하였다. MPS기반 유목 해석 모형은 구체의 개수에 민감한 것으로 나타났다. 수치모의결과 유목의 길이비와 접근유속은 유목 집적 특성에 주요한 인자인것으로 나타났지만 유목의 밀도의 영향은 미미한 것으로 확인되었다. 이 연구를 바탕으로 하천횡단구조물 주변의 유목의 집적에 의한 위험성 평가 지표를 수립하는데 기여할 수 있을 것으로 기대된다.

Keywords

References

  1. Bocchiola, D., Rulli, M.C., and Rosso, R. 2006. Flume experiments on wood entrainment in rivers. Advances in Water Resources 29(8): 1182-1195. https://doi.org/10.1016/j.advwatres.2005.09.006
  2. De Cicco, P.N., Paris, E., Solari, L., and Ruiz-Villanueva, V. 2020. Bridge pier shape influence on wood accumulation: Outcomes from flume experiments and numerical modeling. Journal of Flood Risk Management 13(2): 1-16.
  3. KBS news, last modified Sep 11, 2020, accessed Nov 18, 2020, https://news.kbs.co.kr/news/view.do?ncd=5001887.
  4. Kimura, I. and Kitanozo, K. 2020. Effects of the driftwood Richardson number and applicability of a 3D-2D model to heavy wood jamming around obstacles. Environmental Fluid Mechanics 20: 503-525. https://doi.org/10.1007/s10652-019-09709-6
  5. Kimura, I., Uijttewaal, W.S.J., Hosoda, T., and Ali, M.S. 2009. URANS computations of shallow grid turbulence. Journal of Hydraulic Engineering 135(2): 118-131. https://doi.org/10.1061/(asce)0733-9429(2009)135:2(118)
  6. Koshizuka, S. 1997. Computational fluid dynamics. Baifukan Co. Ltd., Tokyo.
  7. Lagasse, P.F., Clopper, P.E., Zevenbergen, L.W., Spitz, W.J., and Girard, L.G. 2010. Effects of debris on bridge pier scour (NCHRP Report No. 653). Washington, DC: Transportation Research Record.
  8. Laursen, E.M. and Toch, A. 1956. Scour around bridge piers and abutments. Iowa Highway Research Board, Bulletin No. 4.
  9. Lyn, D.A., Cooper, T., Yi, Y.K., Sinha, R.N., and Rao, A.R. 2003. Debris accumulation at bridge crossings, laboratory and field studies. TRB Subject Code: 25-1 (Publication No. FHWA/IN/JTRP-2003/10, SPR-2478).
  10. Melville, B.W. and Dongol, D.M. 1992. Bridge pier scour with debris accumulation. Journal of Hydraulic Engineering 188(9): 1306-1310. https://doi.org/10.1061/(ASCE)0733-9429(1992)118:9(1306)
  11. Panici, D. and Almeida, G.A.M. 2020. Influence of pier geometry and debris characteristics on wood debris accumulations at bridge piers. Journal of Hydraulic Engineering 146(6): 04020041. https://doi.org/10.1061/(asce)hy.1943-7900.0001757
  12. Ruiz-Villanueva, V., Blade E, Sanchez-Juny, M., Marti-Cardona, B., Diez-Herrero, A., and Bodoque, J.M. 2014. Two-dimensional numerical modeling of wood transport. Journal of Hydroinformatics 16(5): 1077-1096. https://doi.org/10.2166/hydro.2014.026
  13. Schalko, I., Schmocker, L., Weitbrecht, V., and Boes, R.M. 2020. Laboratory study on wood accumulation probability at bridge piers. Journal of Hydraulic Research 58(4): 566-581. https://doi.org/10.1080/00221686.2019.1625820
  14. Shrestha, B.B. 2009. Study on mitigation measures against debris flow disasters with driftwood, Thesis or Dissertation, Kyoto University.
  15. Ushijima, S., Makino, O., and Yoshikawa, N. 2009. 3D numerical prediction for transportation and entrapment of driftwood with T-type solid model. Journal of Hydro-science and Hydraulic Engineering, JSCE 27(1): 11-21.