References
- Al-Wabel, M.I., Usman, A.R., El-Naggar, A.H., Aly, A.A., Ibrahim, H.M., Elmaghraby, S., and Al-Omran, A. 2015. Conocarpus biochar as a soil amendment for reducing heavy metal availability and uptake by maize plants. Saudi Journal of Biological Sciences 22(4): 503-511. https://doi.org/10.1016/j.sjbs.2014.12.003
- Arrivault, S., Senger, T., and Kramer, U. 2006. The Arabidopsis metal tolerance protein AtMTP3 maintains metal homeostasis by mediating Zn exclusion from the shoot under Fe deficiency and Zn oversupply. The Plant Journal 46(5): 861-879. https://doi.org/10.1111/j.1365-313X.2006.02746.x
- Babcsanyi, I., Tamas, M., Szatmari, J., Hambek-Olah, B., and Farsang, A. 2020. Assessing the impacts of the main river and anthropogenic use on the degree of metal contamination of oxbow lake sediments (Tisza River Valley, Hungary). Journal of Soils and Sediments 20(3): 1662-1675. https://doi.org/10.1007/s11368-019-02516-y
- Becher, M., Talke, I.N., Krall, L., and Kramer, U. 2004. Cross-species microarray transcript profiling reveals high constitutive expression of metal homeostasis genes in shoots of the zinc hyperaccumulator Arabidopsis halleri. The Plant Journal 37(2): 251-268. https://doi.org/10.1046/j.1365-313X.2003.01959.x
- Bergmann, D., Furth, G., and Mayer, C. 2008. Binding of bivalent cations by xanthan in aqueous solution. International Journal of Biological Macromolecules 43(3): 245-251. https://doi.org/10.1016/j.ijbiomac.2008.06.001
- Chaney, R.A. 1993. Zinc phytotoxicity. Zinc in soils and plants. Springer. pp. 135-150.
- Chang, I. and Cho, G.C. 2012. Strengthening of Korean residual soil with β-1, 3/1, 6-glucan biopolymer. Construction and Building Materials 30: 30-35. https://doi.org/10.1016/j.conbuildmat.2011.11.030
- Chang, I., Im, J., Prasidhi, A.K., and Cho, G.C. 2015. Effects of Xanthan gum biopolymer on soil strengthening. Construction and Building Materials 74: 65-72. https://doi.org/10.1016/j.conbuildmat.2014.10.026
- Chen, C.L., Cui, Y., Cui, M., Zhou, W.J., Wu, H.L., and Ling, H.Q. 2018. A FIT-binding protein is involved in modulating iron and zinc homeostasis in Arabidopsis. Plant, Cell and Environment 41(7): 1698-1714. https://doi.org/10.1111/pce.13321
- Clijsters, H. and Van Assche, F. 1985. Inhibition of photosynthesis by heavy metals. Photosynthesis Research 7(1): 31-40. https://doi.org/10.1007/BF00032920
- Courbot, M., Willems, G., Motte, P., Arvidsson, S., Roosens, N., Saumitou-Laprade, P., and Verbruggen, N. 2007. A major quantitative trait locus for cadmium tolerance in Arabidopsis halleri colocalizes with HMA4, a gene encoding a heavy metal ATPase. Plant Physiology 144(2): 1052-1065. https://doi.org/10.1104/pp.106.095133
- Eren, E. and Arguello, J.M. 2004. Arabidopsis HMA2, a divalent heavy metal-transporting PIB-type ATPase, is involved in cytoplasmic Zn2+ homeostasis. Plant Physiology 136(3): 3712-3723. https://doi.org/10.1104/pp.104.046292
- Fukao, Y., Ferjani, A., Tomioka, R., Nagasaki, N., Kurata, R., Nishimori, Y., Fujiwara, M., and Maeshima, M. 2011. iTRAQ analysis reveals mechanisms of growth defects due to excess zinc in Arabidopsis. Plant Physiology 155(4): 1893-1907. https://doi.org/10.1104/pp.110.169730
- Ghorai, S., Sarkar, A.K., and Pal, S. 2014. Rapid adsorptive removal of toxic Pb2+ ion from aqueous solution using recyclable, biodegradable nanocomposite derived from templated partially hydrolyzed xanthan gum and nanosilica. Bioresource Technology 170: 578-582. https://doi.org/10.1016/j.biortech.2014.08.010
- Hamidifar, H., Keshavarzi, A., and Truong, P. 2018. Enhancement of river bank shear strength parameters using Vetiver grass root system. Arabian Journal of Geosciences 11(20): 611. https://doi.org/10.1007/s12517-018-3999-z
- Heath, R.L. and Packer, L. 1968. Photoperoxidation in isolated chloroplasts: I. Kinetics and stoichiometry of fatty acid peroxidation. Archives of Biochemistry and Biophysics 125(1): 189-198. https://doi.org/10.1016/0003-9861(68)90654-1
- Jakobik-Kolon, A., Bok-Badura, J., Karon, K., Mitko, K., and Milewski, A. 2017. Hybrid pectin-based biosorbents for zinc ions removal. Carbohydrate polymers 169: 213-219. https://doi.org/10.1016/j.carbpol.2017.03.095
- Kim, H.-S., Oh, J.-M., Luan, S., Carlson, J.E., and Ahn, S.-J. 2013. Cold stress causes rapid but differential changes in properties of plasma membrane H+-ATPase of camelina and rapeseed. Journal of Plant Physiology 170: 828-837. https://doi.org/10.1016/j.jplph.2013.01.007
- Kim, Y.Y., Choi, H., Segami, S., Cho, H.T., Martinoia, E., Maeshima, M., and Lee, Y. 2009. AtHMA1 contributes to the detoxification of excess Zn (II) in Arabidopsis. The Plant Journal 58(5): 737-753. https://doi.org/10.1111/j.1365-313X.2009.03818.x
- Kramer, U. and Clemens, S. 2005. Functions and homeostasis of zinc, copper, and nickel in plants. In Molecular biology of metal homeostasis and detoxification. Springer. pp. 215-271.
- Lim, H.G., Kim, H.S., Lee, H.S., Sin, J.H., Kim, E.S., Woo, H.S., and Ahn, S.J. 2018. Amended soil with biopolymer positively affects the growth of Camelina sativa L. under drought stress. Ecology and Resilient Infrastructure 5(3): 163-173. (in Korean) https://doi.org/10.17820/eri.2018.5.3.163
- Liu, H., Zhao, H., Wu, L., Liu, A., Zhao, F.J., and Xu, W. 2017. Heavy metal ATPase 3 (HMA3) confers cadmium hypertolerance on the cadmium/zinc hyperaccumulator Sedum plumbizincicola. New Phytologist 215(2): 687-698. https://doi.org/10.1111/nph.14622
- Morel, M., Crouzet, J., Gravot, A., Auroy, P., Leonhardt, N., Vavasseur, A., and Richaud, P. 2009. AtHMA3, a P1B-ATPase allowing Cd/Zn/Co/Pb vacuolar storage in Arabidopsis. Plant Physiology 149(2): 894-904. https://doi.org/10.1104/pp.108.130294
- Palmer, C.M. and Guerinot, M.L. 2009. Facing the challenges of Cu, Fe and Zn homeostasis in plants. Nature Chemical Biology 5(5): 333. https://doi.org/10.1038/nchembio.166
- Park, W., Feng, Y., and Ahn, S.J. 2014. Alteration of leaf shape, improved metal tolerance, and productivity of seed by overexpressionn of CsHMA3 in Camelina sativa. Biotechnology for Biofuels 7(1): 96. https://doi.org/10.1186/1754-6834-7-96
- Park, W., Feng, Y., Kim, H., Suh, M.C., and Ahn, S.J. 2015. Changes in fatty acid content and composition between wild type and CsHMA3 overexpressing Camelina sativa under heavy-metal stress. Plant Cell Reports 34(9): 1489-1498. https://doi.org/10.1007/s00299-015-1801-1
- Puga, A.P., Abreu, C.A., Melo, L.C.A., and Beesley, L. 2015. Biochar application to a contaminated soil reduces the availability and plant uptake of zinc, lead and cadmium. Journal of Environmental Management 159: 86-93. https://doi.org/10.1016/j.jenvman.2015.05.036
- Seigneurin-Berny, D., Gravot, A., Auroy, P., Mazard, C., Kraut, A., Finazzi, G., Grunwald, D., Rappaport, F., Vavasseur, A., and Joyard, J. 2006. HMA1, a new Cu-ATPase of the chloroplast envelope, is essential for growth under adverse light conditions. Journal of Biological Chemistry 281(5): 2882-2892. https://doi.org/10.1074/jbc.M508333200
- Shanmugam, V., Lo, J.C., Wu, C.L., Wang, S.L., Lai, C.C., Connolly, E.L., Huang, J.L., and Yeh, K.C. 2011. Differential expression and regulation of iron-regulated metal transporters in Arabidopsis halleri and Arabidopsis thaliana-the role in zinc tolerance. New Phytologist 190(1): 125-137. https://doi.org/10.1111/j.1469-8137.2010.03606.x
- Takahashi, R., Bashir, K., Ishimaru, Y., Nishizawa, N.K., and Nakanishi, H. 2012. The role of heavy-metal ATPases, HMAs, in zinc and cadmium transport in rice. Plant Signaling and Behavior 7(12): 1605-1607. https://doi.org/10.4161/psb.22454
- Vahedifard, F., AghaKouchak, A., and Robinson, J.D. 2015. Drought threatens California's levees. Science 349(6250): 799.
- Vassilev, A., Nikolova, A., Koleva, L., and Lidon, F. 2011. Effects of excess Zn on growth and photosynthetic performance of young bean plants. Journal of Phytology 3(6): 58-62.
- Verret, F., Gravot, A., Auroy, P., Leonhardt, N., David, P., Nussaume, L., Vavasseur, A., and Richaud, P. 2004. Overexpression of AtHMA4 enhances root-to-shoot translocation of zinc and cadmium and plant metal tolerance. FEBS Letters 576(3): 306-312. https://doi.org/10.1016/j.febslet.2004.09.023
- Wong, C.K.E. and Cobbett, C.S. 2009. HMA P-type ATPases are the major mechanism for root-to-shoot Cd translocation in Arabidopsis thaliana. New Phytologist 181(1): 71-78. https://doi.org/10.1111/j.1469-8137.2008.02638.x