References
- A. D. Bailey, Boundedness of maximal operators of Schrodinger type with complex time, Rev. Mat. Iberoam. 29 (2013), no. 2, 531-546. https://doi.org/10.4171/RMI/729
- L. Carleson, Some analytic problems related to statistical mechanics, in Euclidean harmonic analysis (Proc. Sem., Univ. Maryland, College Park, Md., 1979), 5-45, Lecture Notes in Math., 779, Springer, Berlin, 1980.
- C.-H. Cho, S. Lee, and A. Vargas, Problems on pointwise convergence of solutions to the Schrodinger equation, J. Fourier Anal. Appl. 18 (2012), no. 5, 972-994. https://doi.org/10.1007/s00041-012-9229-2
- B. E. J. Dahlberg and C. E. Kenig, A note on the almost everywhere behavior of solutions to the Schrodinger equation, in Harmonic analysis (Minneapolis, Minn., 1981), 205-209, Lecture Notes in Math., 908, Springer, Berlin.
- Y. Ding and Y. Niu, Weighted maximal estimates along curve associated with dispersive equations, Anal. Appl. (Singap.) 15 (2017), no. 2, 225-240. https://doi.org/10.1142/S021953051550027X
- S. Lee and K. M. Rogers, The Schrodinger equation along curves and the quantum harmonic oscillator, Adv. Math. 229 (2012), no. 3, 1359-1379. https://doi.org/10.1016/j.aim.2011.10.023
- P. Sjolin, Global maximal estimates for solutions to the Schrodinger equation, Studia Math. 110 (1994), no. 2, 105-114. https://doi.org/10.4064/sm-110-2-105-114
- P. Sjolin, Maximal operators of Schrodinger type with a complex parameter, Math. Scand. 105 (2009), no. 1, 121-133. https://doi.org/10.7146/math.scand.a-15109
- P. Sjogren and P. Sjolin, Convergence properties for the time-dependent Schrodinger equation, Ann. Acad. Sci. Fenn. Ser. A I Math. 14 (1989), no. 1, 13-25. https://doi.org/10.5186/aasfm.1989.1428
- P. Sjolin and F. Soria, A note on Schrodinger maximal operators with a complex parameter, J. Aust. Math. Soc. 88 (2010), no. 3, 405-412. https://doi.org/10.1017/s1446788710000170
- E. M. Stein, Oscillatory integrals in Fourier analysis, in Beijing lectures in harmonic analysis (Beijing, 1984), 307-355, Ann. of Math. Stud., 112, Princeton Univ. Press, Princeton, NJ, 1986.
- L. Vega, El Multiplicador de Schrodinger: la Funcion Maximal y los Operadores de Restriccion (The Schrodinger Multiplier: the Maximal Function and the Restriction Operators - in Spanish), PhD thesis, Universidad Autonoma de Madrid, 1988.