References
- Kaiser WA, Zeitler E. MR imaging of the breast: fast imaging sequences with and without Gd-DTPA. Preliminary observations. Radiology 1989;170:681-686 https://doi.org/10.1148/radiology.170.3.2916021
- Sodickson DK, Manning WJ. Simultaneous acquisition of spatial harmonics (SMASH): fast imaging with radiofrequency coil arrays. Magn Reson Med 1997;38:591-603 https://doi.org/10.1002/mrm.1910380414
- Donoho DL. Compressed sensing. IEEE Trans Inf Theory 2006;52:1289-1306 https://doi.org/10.1109/TIT.2006.871582
- Lustig M, Donoho D, Pauly JM. Sparse MRI: the application of compressed sensing for rapid MR imaging. Magn Reson Med 2007;58:1182-1195 https://doi.org/10.1002/mrm.21391
- Jung H, Ye JC, Kim EY. Improved k-t BLAST and k-t SENSE using FOCUSS. Phys Med Biol 2007;52:3201-3226 https://doi.org/10.1088/0031-9155/52/11/018
- Tsao J, Boesiger P, Pruessmann KP. k-t BLAST and k-t SENSE: dynamic MRI with high frame rate exploiting spatiotemporal correlations. Magn Reson Med 2003;50:1031-1042 https://doi.org/10.1002/mrm.10611
- Liang D, DiBella EV, Chen RR, Ying L. k-t ISD: dynamic cardiac MR imaging using compressed sensing with iterative support detection. Magn Reson Med 2012;68:41-53 https://doi.org/10.1002/mrm.23197
- Caballero J, Price AN, Rueckert D, Hajnal JV. Dictionary learning and time sparsity for dynamic MR data reconstruction. IEEE Trans Med Imaging 2014;33:979-994 https://doi.org/10.1109/TMI.2014.2301271
- Wang Y, Ying L. Compressed sensing dynamic cardiac cine MRI using learned spatiotemporal dictionary. IEEE Trans Biomed Eng 2014;61:1109-1120 https://doi.org/10.1109/TBME.2013.2294939
- Otazo R, Candes E, Sodickson DK. Low-rank plus sparse matrix decomposition for accelerated dynamic MRI with separation of background and dynamic components. Magn Reson Med 2015;73:1125-1136 https://doi.org/10.1002/mrm.25240
- Lingala SG, Hu Y, DiBella E, Jacob M. Accelerated dynamic MRI exploiting sparsity and low-rank structure: k-t SLR. IEEE Trans Med Imaging 2011;30:1042-1054 https://doi.org/10.1109/TMI.2010.2100850
- Yang Y, Sun J, Li H, Xu Z. Deep ADMM-net for compressive sensing MRI. Advances in Neural Information Processing Systems (NIPS), 2016
- Hammernik K, Klatzer T, Kobler E, et al. Learning a variational network for reconstruction of accelerated MRI data. Magn Reson Med 2018;79:3055-3071 https://doi.org/10.1002/mrm.26977
- Knoll F, Hammernik K, Kobler E, Pock T, Recht MP, Sodickson DK. Assessment of the generalization of learned image reconstruction and the potential for transfer learning. Magn Reson Med 2019;81:116-128 https://doi.org/10.1002/mrm.27355
- Wang S, Su Z, Ying L, et al. Accelerating magnetic resonance imaging via deep learning. Proc IEEE Int Symp Biomed Imaging 2016:514-517
- Kwon K, Kim D, Park H. A parallel MR imaging method using multilayer perceptron. Med Phys 2017;44:6209-6224 https://doi.org/10.1002/mp.12600
- Han Y, Yoo J, Kim HH, Shin HJ, Sung K, Ye JC. Deep learning with domain adaptation for accelerated projectionreconstruction MR. Magn Reson Med 2018;80:1189-1205 https://doi.org/10.1002/mrm.27106
- Zhu B, Liu JZ, Cauley SF, Rosen BR, Rosen MS. Image reconstruction by domain-transform manifold learning. Nature 2018;555:487-492 https://doi.org/10.1038/nature25988
- Eo T, Jun Y, Kim T, Jang J, Lee HJ, Hwang D. KIKI-net: crossdomain convolutional neural networks for reconstructing undersampled magnetic resonance images. Magn Reson Med 2018;80:2188-2201 https://doi.org/10.1002/mrm.27201
- Sun L, Fan Z, Huang Y, Ding X, Paisley J. Compressed sensing MRI using a recursive dilated network. AAAI 2018;2444-2451
- Quan TM, Nguyen-Duc T, Jeong WK. Compressed sensing MRI reconstruction using a generative adversarial network with a cyclic loss. IEEE Trans Med Imaging 2018;37:1488-1497 https://doi.org/10.1109/TMI.2018.2820120
- Schlemper J, Caballero J, Hajnal JV, Price AN, Rueckert D. A deep cascade of convolutional neural networks for dynamic MR image reconstruction. IEEE Trans Med Imaging 2018;37:491-503 https://doi.org/10.1109/tmi.2017.2760978
- Wang S, Ke Z, Cheng H, et al. DIMENSION: dynamic MR imaging with both k-space and spatial prior knowledge obtained via multi-supervised network training. NMR Biomed 2019;4:e4131
- Qin C, Schlemper J, Caballero J, Price AN, Hajnal JV, Rueckert D. Convolutional recurrent neural networks for dynamic MR image reconstruction. IEEE Trans Med Imaging 2019;38:280-290 https://doi.org/10.1109/TMI.2018.2863670
- Hu Y, Jacob M. Higher degree total variation (HDTV) regularization for image recovery. IEEE Trans Image Process 2012;21:2559-2571 https://doi.org/10.1109/TIP.2012.2183143
- Walsh DO, Gmitro AF, Marcellin MW. Adaptive reconstruction of phased array MR imagery. Magn Reson Med 2000;43:682-690 https://doi.org/10.1002/(SICI)1522-2594(200005)43:5<682::AID-MRM10>3.0.CO;2-G
- He K, Zhang X, Ren S, Sun J. Deep residual learning for image recognition. Computer Vision and Pattern Recognition (CVPR), IEEE 2016:770-778
- LeCun Y, Bengio Y, Hinton G. Deep learning. Nature 2015;521:436-444 https://doi.org/10.1038/nature14539
- He K, Zhang X, Ren S, Sun J. Delving deep into rectifiers: surpassing human-level performance on ImageNet classification. International Conference on Computer Vision (ICCV), IEEE 2015:1026-1034
- Glorot X, Bordes A, Bengio Y. Deep sparse rectifier neural networks. AISTATS 2011;315-323
- Zeiler MD. ADADELTA: an adaptive learning rate method. arXiv preprint arXiv:1212.5701, 2012
- Kingma DP, Ba JL. Adam: a method for stochastic optimization. arXiv preprint arXiv:1412.6980, 2014
- Abadi M, Barham P, Chen J, et al. Tensorflow: a system for large-scale machine learning. OSDI 2016;16:265-283
- Wang Z, Bovik AC, Sheikh HR, Simoncelli EP. Image quality assessment: from error visibility to structural similarity. IEEE Trans Image Process 2004;13:600-612 https://doi.org/10.1109/TIP.2003.819861