References
- Yoon J, Gong E, Chatnuntawech I, et al. Quantitative susceptibility mapping using deep neural network: QSMnet. Neuroimage 2018;179:199-206 https://doi.org/10.1016/j.neuroimage.2018.06.030
- Cohen O, Zhu B, Rosen MS. MR fingerprinting Deep RecOnstruction NEtwork (DRONE). Magn Reson Med 2018;80:885-894 https://doi.org/10.1002/mrm.27198
- Kwon K, Kim D, Park H. A parallel MR imaging method using multilayer perceptron. Med Phys 2017;44:6209-6224 https://doi.org/10.1002/mp.12600
- Lee D, Lee J, Ko J, Yoon J, Ryu K, Nam Y. Deep learning in MR image processing. Investig Magn Reson Imaging 2019;23:81-99 https://doi.org/10.13104/imri.2019.23.2.81
- Ben-David S, Blitzer J, Crammer K, Pereira F. Analysis of representations for domain adaptation. Advances in Neural Information Processing Systems (NIPS) 2006:137-144
- Martensson G, Ferreira D, Granberg T, et al. The reliability of a deep learning model in clinical out-of-distribution MRI data: a multicohort study. Med Image Anal 2020;66:101714
- Jung W, Yoon J, Ji S, et al. Exploring linearity of deep neural network trained QSM: QSMnet. Neuroimage 2020;211:116619 https://doi.org/10.1016/j.neuroimage.2020.116619
- Knoll F, Hammernik K, Kobler E, Pock T, Recht MP, Sodickson DK. Assessment of the generalization of learned image reconstruction and the potential for transfer learning. Magn Reson Med 2019;81:116-128 https://doi.org/10.1002/mrm.27355
- Zhang C, Bengio S, Hardt M, Recht B, Vinyals O. Understanding deep learning requires rethinking generalization. arXiv preprint arXiv:1611.03530, 2016
- Youn SW, Kwon OD, Hwang MJ. Multi-parametric quantitative MRI for measuring myelin loss in hyperglycemia-induced hemichorea. Investig Magn Reson Imaging 2019;23:148-156 https://doi.org/10.13104/imri.2019.23.2.148
- Seo JP, Kwon YH, Jang SH. Mini-review of studies reporting the repeatability and reproducibility of diffusion tensor imaging. Investig Magn Reson Imaging 2019;23:26-33 https://doi.org/10.13104/imri.2019.23.1.26
- Lee J, Lee D, Choi JY, Shin D, Shin HG, Lee J. Artificial neural network for myelin water imaging. Magn Reson Med 2020;83:1875-1883 https://doi.org/10.1002/mrm.28038
- MacKay A, Whittall K, Adler J, Li D, Paty D, Graeb D. In vivo visualization of myelin water in brain by magnetic resonance. Magn Reson Med 1994;31:673-677 https://doi.org/10.1002/mrm.1910310614
- Prasloski T, Madler B, Xiang QS, MacKay A, Jones C. Applications of stimulated echo correction to multicomponent T2 analysis. Magn Reson Med 2012;67:1803-1814 https://doi.org/10.1002/mrm.23157
- Prasloski T, Rauscher A, MacKay AL, et al. Rapid whole cerebrum myelin water imaging using a 3D GRASE sequence. Neuroimage 2012;63:533-539 https://doi.org/10.1016/j.neuroimage.2012.06.064
- Choi JY, Jeong IH, Oh SH, et al. Evaluation of normalappearing white matter in multiple sclerosis using direct visualization of short transverse relaxation time component (ViSTa) myelin water imaging and gradient echo and spin echo (GRASE) myelin water imaging. J Magn Reson Imaging 2019;49:1091-1098 https://doi.org/10.1002/jmri.26278
- Jeong IH, Choi JY, Kim SH, et al. Comparison of myelin water fraction values in periventricular white matter lesions between multiple sclerosis and neuromyelitis optica spectrum disorder. Mult Scler 2016;22:1616-1620 https://doi.org/10.1177/1352458516636247
- Pauly J, Le Roux P, Nishimura D, Macovski A. Parameter relations for the Shinnar-Le Roux selective excitation pulse design algorithm [NMR imaging]. IEEE Trans Med Imaging 1991;10:53-65 https://doi.org/10.1109/42.75611
- Jeong IH, Choi JY, Kim SH, et al. Normal-appearing white matter demyelination in neuromyelitis optica spectrum disorder. Eur J Neurol 2017;24:652-658 https://doi.org/10.1111/ene.13266
- Borich MR, Mackay AL, Vavasour IM, Rauscher A, Boyd LA. Evaluation of white matter myelin water fraction in chronic stroke. Neuroimage Clin 2013;2:569-580 https://doi.org/10.1016/j.nicl.2013.04.006
- Dvorak AV, Ljungberg E, Vavasour IM, et al. Rapid myelin water imaging for the assessment of cervical spinal cord myelin damage. Neuroimage Clin 2019;23:101896 https://doi.org/10.1016/j.nicl.2019.101896
- Baumeister TR, Kim JL, Zhu M, McKeown MJ. White matter myelin profiles linked to clinical subtypes of Parkinson's disease. J Magn Reson Imaging 2019;50:164-174 https://doi.org/10.1002/jmri.26543
- Lakhani B, Hayward KS, Boyd LA. Hemispheric asymmetry in myelin after stroke is related to motor impairment and function. Neuroimage Clin 2017;14:344-353 https://doi.org/10.1016/j.nicl.2017.01.009
- Maas AL, Hannun AY, Ng AY. Rectifier nonlinearities improve neural network acoustic models. In Proc of the 30th Int Conf Mach Learn (ICML), Atlanta, GA, USA, 2013:3
- Kingma DP, Ba J. Adam: a method for stochastic optimization. arXiv preprint arXiv:1412.6980, 2014
- Wilson DR, Martinez TR. The need for small learning rates on large problems. In Proc 2001 Int Joint Conf Neural Netw (IJCNN), Washington DC, USA, 2001:115-119
- Smith SL, Kindermans P-J, Ying C, Le QV. Don't decay the learning rate, increase the batch size. arXiv preprint arXiv:1711.00489, 2017
- Du YP, Chu R, Hwang D, et al. Fast multislice mapping of the myelin water fraction using multicompartment analysis of T2* decay at 3T: a preliminary postmortem study. Magn Reson Med 2007;58:865-870 https://doi.org/10.1002/mrm.21409
- Meyers SM, Laule C, Vavasour IM, et al. Reproducibility of myelin water fraction analysis: a comparison of region of interest and voxel-based analysis methods. Magn Reson Imaging 2009;27:1096-1103 https://doi.org/10.1016/j.mri.2009.02.001
- Smith SM. Fast robust automated brain extraction. Hum Brain Mapp 2002;17:143-155 https://doi.org/10.1002/hbm.10062
- Hennig J. Multiecho imaging sequences with low refocusing flip angles. J Magn Reson 1988;78:397-407 https://doi.org/10.1016/0022-2364(88)90128-X
- Wang J, Mao W, Qiu M, Smith MB, Constable RT. Factors influencing flip angle mapping in MRI: RF pulse shape, slice-select gradients, off-resonance excitation, and B0 inhomogeneities. Magn Reson Med 2006;56:463-468 https://doi.org/10.1002/mrm.20947
- Pan SJ, Yang Q. A survey on transfer learning. IEEE Trans Knowl Data Eng 2009;22:1345-1359 https://doi.org/10.1109/TKDE.2009.191
- He H, Garcia EA. Learning from imbalanced data. IEEE Trans Knowl Data Eng 2009;21:1263-1284 https://doi.org/10.1109/TKDE.2008.239
- Krawczyk B. Learning from imbalanced data: open challenges and future directions. Artificial Intelligence 2016;5:221-232
- Lee LE, Ljungberg E, Shin D, et al. Inter-vendor reproducibility of myelin water imaging using a 3D gradient and spin echo sequence. Front Neurosci 2018;12:854 https://doi.org/10.3389/fnins.2018.00854