References
- Boveiri HR, Khayami R, Javidan R, MehdiZadeh AR. Medical image registration using deep neural networks: a comprehensive review. ArXiv 2002.03401;1-45
- Haskins G, Kruger U, Yan P. Deep learning in medical image registration: a survey. Mach Vision Appl 2020;31:8 https://doi.org/10.1007/s00138-020-01060-x
- Wu G, Kim M, Wang Q, Gao Y, Liao S, Shen D. Unsupervised deep feature learning for deformable registration of MR brain images. Med Image Comput Comput Assist Interv 2013;16:649-656
- Ghosal S, Ray N. Deep deformable registration: enhancing accuracy by fully convolutional neural net. Pattern Recognit Lett 2017;94:81-86 https://doi.org/10.1016/j.patrec.2017.05.022
- Blendowski M, Heinrich MP. 3D-CNNs for deep binary descriptor learning in medical volume data. Informatik Aktuell 2018:23-28
- Liu X, Jiang D, Wang M, Song Z. Image synthesis-based multi-modal image registration framework by using deep fully convolutional networks. Med Biol Eng Comput 2019;57:1037-1048 https://doi.org/10.1007/s11517-018-1924-y
- Cheng X, Wang B, Liu Y, Yuan Y, Shu Y, Chen B. Comparable electrode impedance and speech perception at 12 months after cochlear implantation using round window versus cochleostomy: an analysis of 40 patients. ORL J Otorhinolaryngol Relat Spec 2018;80:248-258 https://doi.org/10.1159/000490764
- Yang X, Kwitt R, Niethammer M. Fast predictive image registration. Lect Notes Comput Sc 2016:48-57
- Sokooti H, de Vos B, Berendsen F, Lelieveldt BPF, Isgum I, Staring M. Nonrigid image registration using multi-scale 3D convolutional neural networks. Lect Notes Comput Sc 2017:232-239
- Eppenhof KAJ, Lagarge MW, Moeskops P, Veta M, Pluim JPW. Deformable image registration using convolutional neural networks. Med Imaging 2018: Image Processing 2018:105740S
- Cao X, Yang J, Zhang J, et al. Deformable image registration based on similarity-steered CNN regression. Med Image Comput Comput Assist Interv 2017;10433:300-308
- Sun L, Zhang S. Deformable MRI-ultrasound registration using 3D convolutional neural network. Lect Notes Comput Sc 2018:152-158
- Balakrishnan G, Zhao A, Sabuncu MR, Guttag J, Dalca AV. VoxelMorph: a learning framework for deformable medical image registration. IEEE Trans Med Imaging 2019 [Online ahead of print]
- Jaderberg M, Simonyan K, Zisserman A, Kavukcuoglu K. Spatial transformer networks. Advances in Neural Information Processing Systems, 2015:2017-2025
- Li H, Fan Y. Non-rigid image registration using selfsupervised fully convolutional networks without training data. IEEE 15th International Symposium on Biomedical Imaging (ISBI 2018), 2018:1075-1078
- de Vos BD, Berendsen FF, Viergever MA, Staring M, Isgum I. End-to-end unsupervised deformable image registration with a convolutional neural network. Lect Notes Comput Sc, 2017:204-212
- Dalca AV, Balakrishnan G, Guttag J, Sabuncu MR. Unsupervised learning for fast probabilistic diffeomorphic registration. Lect Notes Comput Sc, 2018:729-738
- Yoo I, Hildebrand DGC, Tobin WF, Lee WCA, Jeong WK. ssEMnet: serial-section electron microscopy image registration using a spatial transformer network with learned features. Lect Notes Comput Sc 2017:249-257
- Shu C, Chen X, Xie Q, Han H. An unsupervised network for fast microscopic image registration. Medical Imaging 2018: Digital Pathology 2018;10581:105811D
- Kearney V, Haaf S, Sudhyadhom A, Valdes G, Solberg TD. An unsupervised convolutional neural network-based algorithm for deformable image registration. Phys Med Biol 2018;63:185017 https://doi.org/10.1088/0031-9155/63/18/185017
- Balakrishnan G, Zhao A, Sabuncu MR, Guttag J, Dalca AV. An unsupervised learning model for deformable medical image registration. Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR), 2018:9252-9260
- Ronneberger O, Fischer P, Brox T. U-net: convolutional networks for biomedical image segmentation. MICCAI 2015: Medical Image Computing and Computer-Assisted Intervention, 2015:234-241
- Kim B, Ye JC. Cycle-consistent adversarial network with polyphase U-Nets for liver lesion segmentation. 1st Conf Med Imaging with Deep Learn (MIDL 2018), 2018:1-3
- Ye JC, Han Y, Cha E. Deep convolutional framelets: a general deep learning framework for inverse problems. SIAM J Imaging Sci 2018;11:991-1048 https://doi.org/10.1137/17M1141771
- Kim B, Ye JC. Mumford-shah loss functional for image segmentation with deep learning. IEEE T Image Process 2019;29:1856-1866 https://doi.org/10.1109/TIP.2019.2941265
- LaMontagne PJ, Benzinger TLS, Morris JC, et al. OASIS-3: longitudinal neuroimaging, clinical, and cognitive dataset for normal aging and Alzheimer disease. Alzheimer's Dement 2018;14:P1097
- Fischl B. FreeSurfer. Neuroimage 2012;62:774-781 https://doi.org/10.1016/j.neuroimage.2012.01.021
- Avants BB, Epstein CL, Grossman M, Gee JC. Symmetric diffeomorphic image registration with crosscorrelation: evaluating automated labeling of elderly and neurodegenerative brain. Med Image Anal 2008;12:26-41 https://doi.org/10.1016/j.media.2007.06.004