References
- Heidemann RM, Ozsarlak O, Parizel PM, et al. A brief review of parallel magnetic resonance imaging. Eur Radiol 2003;13:2323-2337 https://doi.org/10.1007/s00330-003-1992-7
- Donoho DL. Compressed sensing. IEEE Trans Inf Theory 2006;52:1289-1306 https://doi.org/10.1109/TIT.2006.871582
- Lustig M, Donoho DL, Santos JM, Pauly JM. Compressed sensing MRI. IEEE Signal Proc Mag 2008;25:72-82 https://doi.org/10.1109/MSP.2007.914728
- Liang D, Liu B, Wang J, Ying L. Accelerating SENSE using compressed sensing. Magn Reson Med 2009;62:1574-1584 https://doi.org/10.1002/mrm.22161
- Huang J, Zhang S, Metaxas D. Efficient MR image reconstruction for compressed MR imaging. Med Image Anal 2011;15:670-679 https://doi.org/10.1016/j.media.2011.06.001
- Lin FH, Kwong KK, Belliveau JW, Wald LL. Parallel imaging reconstruction using automatic regularization. Magn Reson Med 2004;51:559-567 https://doi.org/10.1002/mrm.10718
- Dong W, Shi G, Li X, Ma Y, Huang F. Compressive sensing via nonlocal low-rank regularization. IEEE Trans Image Process 2014;23:3618-3632 https://doi.org/10.1109/TIP.2014.2329449
- Eksioglu EM. Decoupled algorithm for MRI reconstruction using nonlocal block matching model: BM3D-MRI. J Math Imaging Vis 2016;56:430-440 https://doi.org/10.1007/s10851-016-0647-7
- Ravishankar S, Bresler Y. MR image reconstruction from highly undersampled k-space data by dictionary learning. IEEE Trans Med Imaging 2011;30:1028-1041 https://doi.org/10.1109/TMI.2010.2090538
- Huang Y, Paisley J, Lin Q, Ding X, Fu X, Zhang XP. Bayesian nonparametric dictionary learning for compressed sensing MRI. IEEE Trans Image Process 2014;23:5007-5019 https://doi.org/10.1109/TIP.2014.2360122
- Wang S, Su Z, Ying L, et al. Accelerating magnetic resonance imaging via deep learning. Proc IEEE Int Symp Biomed Imaging, 2016:514-517
- Ronneberger O, Fischer P, Brox T. U-net: convolutional networks for biomedical image segmentation. MICCAI 2015: Medical Image Computing and Computer-Assisted Intervention, 2015:234-241
- Lee D, Yoo J, Ye JC. Deep residual learning for compressed sensing MRI. Proc IEEE Int Symp Biomed Imaging, 2017:15-18
- Schlemper J, Caballero J, Hajnal JV, Price A, Rueckert D. A deep cascade of convolutional neural networks for MR image reconstruction. IMPI 2017: Information Processing in Medical Imaging, 2017:647-658
- Aggarwal HK, Mani MP, Jacob M. MoDL: model-based deep learning architecture for inverse problems. IEEE Trans Med Imaging 2019;38:394-405 https://doi.org/10.1109/tmi.2018.2865356
- Liu Q, Yang Q, Cheng H, Wang S, Zhang M, Liang D. Highly undersampled magnetic resonance imaging reconstruction using autoencoding priors. Magn Reson Med 2020;83:322-336 https://doi.org/10.1002/mrm.27921
- Zhang M, Li M, Zhou J, et al. High-dimensional embedding network derived prior for compressive sensing MRI reconstruction. Med Image Anal 2020;64:101717 https://doi.org/10.1016/j.media.2020.101717
- Tezcan KC, Baumgartner CF, Luechinger R, Pruessmann KP, Konukoglu E. MR image reconstruction using deep density Priors. IEEE Trans Med Imaging 2019;38:1633-1642 https://doi.org/10.1109/tmi.2018.2887072
- Mardani M, Gong E, Cheng JY, et al. Deep generative adversarial neural networks for compressive sensing MRI. IEEE Trans Med Imaging 2019;38:167-179 https://doi.org/10.1109/TMI.2018.2858752
- Mardani M, Monajemi H, Papyan V, Vasanawala S, Donoho D, Pauly J. Recurrent generative adversarial networks for proximal learning and automated compressive image recovery. arXiv preprint arXiv 2017:1711.10046
- Luo G, Zhao N, Jiang W, Hui ES, Cao P. MRI reconstruction using deep Bayesian estimation. Magn Reson Med 2020;84:2246-2261 https://doi.org/10.1002/mrm.28274
- Hussein S, Kandel P, Bolan CW, Wallace MB, Bagci U. Lung and Pancreatic Tumor Characterization in the deep learning era: novel supervised and unsupervised learning approaches. IEEE Trans Med Imaging 2019;38:1777-1787 https://doi.org/10.1109/tmi.2019.2894349
- Antun V, Renna F, Poon C, Adcock B, Hansen AC. On instabilities of deep learning in image reconstruction and the potential costs of AI. Proc Natl Acad Sci U S A & 2020;117:30088-30095 https://doi.org/10.1073/pnas.1907377117
- Hastie T, Tibshirani R, Friedman J. The elements of statistical learning: data mining, inference, and prediction. Springer Science & Business Media, 2009
- Bengio Y, Courville AC, Vincent P. Unsupervised feature learning and deep learning: a review and new perspectives. CoRR 2012;abs/1206.5538
- Erhan D, Courville A, Bengio Y, Vincent P. Why does unsupervised pre-training help deep learning- JMLR Workshop and Conference Proceedings, 2010:201-208
- Bengio Y, LeCun Y. Scaling learning algorithms towards AI. Large-scale Kernel Machines 2007;34:1-41
- Vincent P, Larochelle H, Lajoie I, Bengio Y, Manzagol PA. Stacked denoising autoencoders: learning useful representations in a deep network with a local denoising criterion. J Mach Learn Res 2010;11:3371-3408
- Vincent P, Larochelle H, Bengio Y, Manzagol P. Extracting and composing robust features with denoising autoencoders. In Proceedings of International Conference on Machine Learning, 2008:1096-1103
- Rifai S, Vincent P, Muller X, Glorot X, Bengio Y. Contractive auto-encoders: explicit invariance during feature extraction. In Proceeding International Conference on Machine Learning (ICML), 2011:833-840
- Lee H, Grosse R, Ranganath R, Ng AY. Convolutional deep belief networks for scalable unsupervised learning of hierarchical representations. In Proceeding International Conference on Machine Learning (ICML), 2009:609-616
- Bengio Y. Deep learning of representations: looking forward. International Conference on Statistical Language and Speech Processing, 2013:1-37
- Rolfe JT. Discrete variational autoencoders. arXiv preprint arXiv:1609.02200, 2016
- Dilokthanakul N, Mediano PAM, Garnelo M, et al. Deep unsupervised clustering with gaussian mixture variational autoencoders. arXiv preprint arXiv:1611.02648, 2016
- Kipf TN, Welling M. Variational graph auto-encoders. arXiv preprint arXiv:1611.07308, 2016
- Sutskever I, Jozefowicz R, Gregor K, Rezende D, Lillicrap T, Vinyals O. Towards principled unsupervised learning. arXiv preprint arXiv:1511.06440, 2015
- Yi Z, Zhang H, Tan P, Gong M. Dualgan: Unsupervised dual learning for image-to-image translation. Proceedings of the IEEE International Conference on Computer Vision (ICCV), 2017:2849-2857
- Yuan Y, Liu S, Zhang J, et al. Unsupervised image superresolution using cycle-in-cycle generative adversarial networks. Proceeding of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) Workshops, 2018:701-710
- Wang C, Macnaught G, Papanastasiou G, ManGillicray T, Newby D. Unsupervised learning for cross-domain medical image synthesis using deformation invariant cycle consistency networks. International Workshop on Simulation and Synthesis in Medical Imaging, 2018:52-60
- Lugmayr A, Danelljan M, Timofte R. Unsupervised learning for real-world super-resolution. IEEE/CVF International Conference on Computer Vision Workshop (ICCV Workshops), 2019:3408-3416
- Song Y, Ermon S. Generative modeling by estimating gradients of the data distribution. 33rd Conference on Neural Information Processing Systems, 2019:11918-11930
- Kingma DP, Dhariwal P. Glow: Generative flow with invertible 1x1 convolution. Advances in Neural Information Processing Systems 31 (NeurIPS 2018), 2018:10215-10224
- Oord A, Kalchbrenner N, Kavukcuoglu K. Pixel recurrent neural networks. arXiv preprint arXiv:1601.06759, 2016
- Quan TM, Nguyen-Duc T, Jeong WK. Compressed sensing MRI reconstruction using a generative adversarial network with a cyclic loss. IEEE Trans Med Imaging 2018;37:1488-1497 https://doi.org/10.1109/TMI.2018.2820120
- Radford A, Metz L, Chintala S. Unsupervised representation learning with deep convolutional generative adversarial networks. arXiv preprint arXiv: 1511.06434, 2015
- Lustig M, Donoho DL, Santos JM, Pauly JM. Compressed sensing MRI. IEEE Signal Proc Mag 2008;25:72-82 https://doi.org/10.1109/MSP.2007.914728
- Lin FH, Wang FN, Ahlfors SP, Hamalainen MS, Belliveau JW. Parallel MRI reconstruction using variance partitioning regularization. Magn Reson Med 2007;58:735-744 https://doi.org/10.1002/mrm.21356
- Akcakaya M, Nam S, Hu P, et al. Compressed sensing with wavelet domain dependencies for coronary MRI: a retrospective study. IEEE Trans Med Imaging 2011;30:1090-1099 https://doi.org/10.1109/TMI.2010.2089519
- Liu Q, Leung H. Synthesis-analysis deconvolutional network for compressed sensing. 2017 IEEE International Conference on Image Processing (ICIP), 2017:1940-1944
- Liu Q, Wang S, Yang K, Luo J, Zhu Y, Liang D. Highly undersampled magnetic resonance image reconstruction using two-level Bregman method with dictionary updating. IEEE Trans Med Imaging 2013;32:1290-1301 https://doi.org/10.1109/TMI.2013.2256464
- Qu X, Hou Y, Lam F, Guo D, Zhong J, Chen Z. Magnetic resonance image reconstruction from undersampled measurements using a patch-based nonlocal operator. Med Image Anal 2014;18:843-856 https://doi.org/10.1016/j.media.2013.09.007
- Xiong J, Liu Q, Wang Y, Xu X. A two-stage convolutional sparse prior model for image restoration. J Vis Commun Image R 2017;48:268-280 https://doi.org/10.1016/j.jvcir.2017.07.002
- He J, Liu Q, Christodoulou AG, Ma C, Lam F, Liang ZP. Accelerated High-Dimensional MR Imaging With Sparse Sampling Using Low-Rank Tensors. IEEE Trans Med Imaging 2016;35:2119-2129 https://doi.org/10.1109/TMI.2016.2550204
- Hammernik K, Knoll F, Sodickson D, Pock T. Learning a variational model for compressed sensing MRI reconstruction. Proceedings of the International Society of Magnetic Resonance in Medicine (ISMRM), 2016:1088
- Mardani M, Gong E, Cheng JY, et al. Deep generative adversarial networks for compressed sensing automates MRI. arXiv preprint arXiv:1706.00051, 2017
- Ye JC, Han Y, Cha E. Deep convolutional framelets: a general deep learning framework for inverse problems. SIAM J Imaging Sci 2018;11:991-1048 https://doi.org/10.1137/17M1141771
- Alain G, Bengio Y. What regularized auto-encoders learn from the data-generating distribution. J Mach Learn Res 2014;15:3743-3773
- Nguyen A, Clune J, Bengio Y, Dosovitskiy A, Yosinski J. Plug & play generative networks: conditional iterative generation of images in latent space. IEEE Conference on Computer Vision and Pattern Recognition (CVPR), 2017:4467-4477
- Bigdeli SA, Zwicker M. Image restoration using autoencoding priors. arXiv preprint arXiv:1703.09964, 2017
- Bigdeli SA, Zwicker M, Favaro P, Jin M. Deep meanshift priors for image restoration. Advances in Neural Information Processing Systems 30 (NIPS 2017), 2017:763-772
- Kingma DP, Welling M. Auto-encoding variational bayes. arXiv preprint arXiv:1312.6114, 2013
- Rezende DJ, Mohamed S, Wierstra D. Stochastic backpropagation and approximate inference in deep generative models. arXiv preprint arXiv:1401.4082, 2014
- Bishop CM. Pattern recognition and machine learning. New York, NY: Springer, 2006:738
- Salimans T, Karpathy A, Chen X, Kingma DP. Pixelcnn++: improving the PixelCNN with discretized logistic mixture likelihood and other modifications. arXiv preprint arXiv:1701.05517, 2017
- Larochelle H, Murray I. The neural autoregressive distribution estimator. Proceeding International Conference on Artificial Intelligence and Statistics, JMLR Workshop and Conference Proceedings, 2011:29-37
- Grover A, Dhar M, Ermon S. Flow-GAN: combining maximum likelihood and adversarial learning in generative models. arXiv preprint arXiv:1705.08868, 2017
- Dinh L, Krueger D, Bengio Y. Nice: non-linear independent components estimation. arXiv preprint arXiv:1410.8516, 2014
- Dinh L, Sohl-Dickstein J, Bengio S. Density estimation using real NVP. arXiv preprint arXiv:1605.08803, 2016
- Ma X, Kong X, Zhang S, Hovy E. MaCow: masked convolutional generative flow. Advances in Neural Information Processing Systems 32 (NeurIPS 2019), 2019:5893-5902
- Hoogeboom E, Berg R, Welling M. Emerging convolutions for generative normalizing flows. arXiv preprint arXiv:1901.11137, 2019
- Uecker M, Hohage T, Block KT, Frahm J. Image reconstruction by regularized nonlinear inversion-joint estimation of coil sensitivities and image content. Magn Reson Med 2008;60:674-682 https://doi.org/10.1002/mrm.21691
- Goodfellow I, Pouget-Abadie J, Mirza M, et al. Generative adversarial nets. Advances in neural information processing systems 27 (NIPS 2014), 2014:2672-2680