DOI QR코드

DOI QR Code

Comparative Analysis of Uropathogenic Escherichia coli ST131 and Non-ST131 Isolated from Urinary Tract Infection Patients in Daejeon

대전지역의 요로감염 환자로부터 분리된 요로병인성 대장균 ST131과 Non-ST131의 비교 분석

  • Cho, Hye Hyun (Departments of Biomedical Laboratory Science, Daejeon Institute of Science and Technology)
  • 조혜현 (대전과학기술대학교 임상병리과)
  • Received : 2020.09.16
  • Accepted : 2020.09.21
  • Published : 2020.12.31

Abstract

Uropathogenic Escherichia coli (UPEC) is a major cause of urinary tract infections (UTIs), which is one of the most common infectious diseases in humans worldwide. Since UPEC is increasingly gaining resistance to many antimicrobial agents, antibiotic therapy of UTI has recently become a great concern. This study examined the epidemiological relationship, and antimicrobial resistance patterns of 84 UPEC isolates obtained from UTI patients in Daejeon, from March to December 2017. Molecular epidemiology was investigated by multilocus sequence typing (MLST), and an antimicrobial susceptibility test was determined using an E-test. In this study, UTI was more common in females (73.8%) than in males (26.2%), and the highest incidence of UTI was observed in the age group in their 70s. Among the 84 UPEC isolates, 59 isolates (70.2%) were multidrug-resistant (MDR), and the major sequence type was ST131 (44 isolates, 52.4%). Interestingly, the rates of MDR in non-ST131 isolates (72.5%) were higher compared to ST131 isolates (68.2%). These results indicate the possibility of the development and spread of MDR in non-ST131 isolates. Effective surveillance networks and continuous research need to be conducted globally to prevent the emergence and international spread of MDR non-ST131 isolates.

전 세계적으로 요로감염은 사람에서 가장 흔한 감염 질환 중 하나로, 요로병인성 E. coli는 요로감염의 주요 원인균이다. 요로병인성 E. coli는 많은 항균제에 대한 내성이 점차 증가하고 있어, 최근 요로감염의 항균제 치료에 큰 우려를 낳고 있는 실정이다. 본 연구는 2017년 3월부터 12월까지, 대전지역의 요로감염 환자에서 분리된 요로병인성 E. coli 84 균주를 대상으로 역학관계와 항균제 내성 양상을 조사하였다. 역학 관계를 확인하기 위해 다좌위 서열 형별분석(MLST)를 실시하였고, 항균제 감수성 시험은 E-test법으로 확인하였다. 본 연구 결과, 요로감염은 남성(26.2%)보다 여성(73.8%)에서 더 흔한 분포를 보였고, 70대가 가장 높은 분포의 연령대로 확인되었다. 84 균주의 요로병인성 E. coli 중, 59 균주(70.2%)가 다제내성이었으며, 주요 seqeunce type은 ST131 (44 균주, 52.4%)임을 확인하였다. 흥미롭게도, non-ST131에서 다제내성의 비율(72.5%)이 ST131 (68.2%)보다 더 높은 결과를 확인하였다. 이러한 연구결과는 non-ST131에서의 다제내성의 발달과 확산 가능성을 의미하는 것으로 해석된다. 다제내성 non-ST131의 출현과 국제적인 확산을 예방하기 위해, 전 세계적으로 효과적인 감시 체계와 지속적인 연구가 수행되어야 할 것으로 사료된다.

Keywords

References

  1. Dadi BR, Abebe T, Zhang L, Mihret A, Abebe W, Amogne W. Distribution of virulence genes and phylogenetics of uropathogenic Escherichia coli among urinary tract infection patients in Addis Ababa, Ethiopia. BMC Infect Dis. 2020;20:108. https://doi.org/10.1186/s12879-020-4844-z
  2. Foxman B. The epidemiology of urinary tract infection. Nat Rev Urol. 2010;7:653-660. https://doi.org/10.1038/nrurol.2010.190
  3. Hooton TM. Recurrent urinary tract infection in women. Int J Antimicrob Agents. 2001;17:259-268. https://doi.org/10.1016/s0924-8579(00)00350-2
  4. Foxman B. Recurring urinary tract infection: incidence and risk factors. Am J Public Health. 1990;80:331-333. https://doi.org/10.2105/ajph.80.3.331
  5. Norouzian H, Katouli M, Shahrokhi N, Sabeti S, Pooya M, Bouzari S. The relationship between phylogenetic groups and antibiotic susceptibility patterns of Escherichia coli strains isolated from feces and urine of patients with acute or recurrent urinary tract infection. Iran J Microbiol. 2019;11:478-487.
  6. Loh K, Sivalingam N. Urinary tract infections in pregnancy. Malays Fam Physician. 2007;2:54-57.
  7. Schwartz DJ1, Kalas V, Pinkner JS, Chen SL, Spaulding CN, Dodson KW, et al. Positively selected FimH residues enhance virulence during urinary tract infection by altering FimH conformation. Proc Natl Acad Sci U S A. 2013;110:15530-15537. https://doi.org/10.1073/pnas.1315203110
  8. Ronald A. The etiology of urinary tract infection: traditional and emerging pathogens. Am J Med. 2002;113:14S-19S. https://doi.org/10.1016/s0002-9343(02)01055-0
  9. Zowawi HM, Harris PN, Roberts MJ, Tambyah PA, Schembri MA, Pezzani MD, et al. The emerging threat of multidrug-resistant Gram-negative bacteria in urology. Nat Rev Urol. 2015;12:570-584. https://doi.org/10.1038/nrurol.2015.199
  10. Magiorakos AP, Srinivasan A, Carey RB, Carmeli Y, Falagas ME, Giske CG, et al. Multidrug-resistant, extensively drug-resistant and pandrug-resistant bacteria: an international expert proposal for interim standard definitions for acquired resistance. Clin Microbiol Infect. 2012;18:268-281. https://doi.org/10.1111/j.1469-0691.2011.03570.x
  11. Alghoribi MF, Gibreel TM, Farnham G, Al Johani SM, Balkhy HH, Upton M. Antibiotic-resistant ST38, ST131 and ST405 strains are the leading uropathogenic Escherichia coli clones in Riyadh, Saudi Arabia. J Antimicrob Chemother. 2015;70:2757-2762. https://doi.org/10.1093/jac/dkv188
  12. Nicolas-Chanoine MH, Bertrand X, Madec JY. Escherichia coli ST131, an intriguing clonal group. Clin Microbiol Rev. 2014;27:543-574. https://doi.org/10.1128/CMR.00125-13
  13. Nicolas-Chanoine MH, Blanco J, Leflon-Guibout V, Demarty R, Alonso MP, Canica MM, et al. Intercontinental emergence of Escherichia coli clone O25:H4-ST131 producing CTX-M-15. J Antimicrob Chemother. 2008;61:273-281. https://doi.org/10.1093/jac/dkm464
  14. Peirano G, Pitout JD. Molecular epidemiology of Escherichia coli producing CTX-M beta-lactamases: the worldwide emergence of clone ST131 O25:H4. Int J Antimicrob Agents. 2010;35:316-321. https://doi.org/10.1016/j.ijantimicag.2009.11.003
  15. Alqasim A, Abu Jaffal A, Alyousef AA. Prevalence and molecular characteristics of sequence type 131 clone among clinical uropathogenic Escherichia coli isolates in Riyadh, Saudi Arabia. Saudi J Biol Sci. 2020;27:296-302. https://doi.org/10.1016/j.sjbs.2019.09.020
  16. Clinical and Laboratory Standards Institute. Performance standards for antimicrobial susceptibility testing; twentieth informational supplement, M100-S20. Wayne, PA: Clinical and Laboratory Standards Institute; 2010.
  17. Mortazavi-Tabatabaei SAR, Ghaderkhani J, Nazari A, Sayehmiri K, Sayehmiri F, Pakzad I. Pattern of antibacterial resistance in urinary tract infections: A systematic review and meta-analysis. Int J Prev Med. 2019;10:169. https://doi.org/10.4103/ijpvm.IJPVM_419_17
  18. Kothari A, Sagar V. Antibiotic resistance in pathogens causing community-acquired urinary tract infections in India: A multicenter study. J Infect Dev Ctries. 2008;2:354-358. https://doi.org/10.3855/jidc.196
  19. Matsui Y, Hu Y, Rubin J, de Assis RS, Suh J, Riley LW. Multilocus sequence typing of Escherichia coli isolates from urinary tract infection patients and from fecal samples of healthy subjects in a college community. Microbiologyopen. 2020;9:e1032. https://doi.org/10.1002/mbo3.1032
  20. Cheung DA, Nicholson A, Butterfield TR, da Costa M. Prevalence, co-infection and antibiotic resistance of Escherichia Coli from blood and urine samples at a hospital in Jamaica. J Infect Dev Ctries. 2020;14:146-152. https://doi.org/10.3855/jidc.11361
  21. Goncalves LF, de Oliveira Martins-Júnior P, de Melo ABF, da Silva RCRM, de Paulo Martins V, Pitondo-Silva A, et al. Multidrug resistance dissemination by extended-spectrum β-lactamase-producing Escherichia coli causing community-acquired urinary tract infection in the Central-Western Region, Brazil. J Glob Antimicrob Resist. 2016;6:1-4. https://doi.org/10.1016/j.jgar.2016.02.003
  22. da Cruz Campos AC, Cavallo FM, L Andrade N, van Dijl JM, Couto N, Zrimec J, et al. Determining the virulence properties of Escherichia coli ST131 containing bacteriocin-encoding plasmids using short- and long-read sequencing and comparing them with those of other E. coli lineages. Microorganisms. 2019;7:E534. https://doi.org/10.3390/microorganisms7110534
  23. Plantamura J, Bousquet A, Vedy S, Larreche S, Bigaillon C, Delacour H, et al. Molecular epidemiological of extended-spectrum β-lactamase producing Escherichia coli isolated in Djibouti. Infect Dev Ctries. 2019;13:753-758. https://doi.org/10.3855/jidc.11283
  24. Wu J, Lan F, Lu Y, He Q, Li B. Molecular characteristics of ST1193 clone among phylogenetic group B2 non-ST131 fluoroquinolone-resistant Escherichia coli. Front Microbiol. 2017;8:2294. https://doi.org/10.3389/fmicb.2017.02294
  25. Manges AR, Johnson JR, Foxman B, O'Bryan TT, Fullerton KE, Riley LW. Widespread distribution of urinary tract infections caused by a multidrug-resistant Escherichia coli clonal group. N Engl J Med. 2001;345:1007-1013. https://doi.org/10.1056/NEJMoa011265
  26. Kim B, Seo MR, Kim J, Kim Y, Wie SH, Ki M, et al. Molecular epidemiology of ciprofloxacin-resistant Escherichia coli isolated from community-acquired urinary tract infections in Korea. Infect Chemother. 2020;52:194-203. https://doi.org/10.3947/ic.2020.52.2.194
  27. Mukherjee M, Basu S, Mukherjee SK, Majumder M. Multidrug-resistance and extended spectrum beta-lactamase production in uropathogenic E. Coli which were isolated from hospitalized patients in Kolkata, India. J Clin Diagn Res. 2013;7:449-453. https://doi.org/10.7860/JCDR/2013/4990.2796
  28. Iranpour D, Hassanpour M, Ansari H, Tajbakhsh S, Khamisipour G, Najafi A. Phylogenetic groups of Escherichia coli strains from patients with urinary tract infection in Iran based on the new clermont phylotyping method. Biomed Res Int. 2015;2015:846219. https://doi.org/10.1155/2015/846219