DOI QR코드

DOI QR Code

Effect of Pu'er tea extract on C2C12 myoblast differentiation

보이차 열수 추출물의 근아세포 근분화에 미치는 영향

  • Lee, Hyoseong (Department of Biochemistry, Chungnam National University) ;
  • Choi, Sunkyung (Department of Biochemistry, Chungnam National University) ;
  • Lee, Boyeong (Department of Biochemistry, Chungnam National University) ;
  • Kim, Eunmi (Department of Predictive Toxicology, Korea Institute of Toxicology) ;
  • Lee, Woonghee (Institute of Biotechnology, Chungnam National University) ;
  • Han, Hyosang (Department of Health Administration, Joongbu University) ;
  • Kim, Keekwang (Department of Biochemistry, Chungnam National University)
  • 이효성 (충남대학교 생화학과) ;
  • 최선경 (충남대학교 생화학과) ;
  • 이보영 (충남대학교 생화학과) ;
  • 김은미 (안전성평가연구소 예측독성연구본부) ;
  • 이웅희 (충남대학교 생물공학연구소) ;
  • 한효상 (중부대학교 보건행정학과) ;
  • 김기광 (충남대학교 생화학과)
  • Received : 2020.09.21
  • Accepted : 2020.12.20
  • Published : 2020.12.28

Abstract

At present, aging-related degenerative muscle diseases are considered a serious problem. However, the drug effect on the treatment and prevention of sarcopenia has not been investigated. The purpose of this study was to evaluate the value of extract of Pu'er tea as a remedy to alleviate the symptoms of sarcopenia. Pu'er tea extracts showed excellent radical scavenging ability. The expression of Myh3 was promoted and myotube formation also was increased by treatment of Pu'er tea extracts. These results suggest that Pu'er tea is a natural substance that promotes myogenesis, and is valuable as a material for pharmaceutical research on the prevention and treatment of various muscle diseases, including sarcopenia. And It is necessary to confirm specific indicator substances of puer tea and further study on this.

현재 노화와 관련된 퇴행성 근육 질환은 심각한 문제로 간주되고 있으나 근육 감소증의 치료 및 예방에 대한 약물 효과는 충분히 연구되지 않다. 이에 중국 전통차인 보이차의 추출물을 근육 감소증의 증상을 완화하기 위한 치료제로서 가치를 평가하고자 하였다. 본 실험에서는 이를 평가하기 위하여 ABTS 분석, MTS 분석, 면역 블롯 분석, 면역 형광 현미경법을 수행하였다. 보이차 추출물은 우수한 라디칼 소거 능을 나타냈으며, 또한 근관을 형성하는 Myh3의 발현이 촉진시켰고, 근관 형성을 증진시켰다. 따라서 보이차는 근육생성을 촉진하는 천연 물질이며 근감소증을 포함한 다양한 근육 질환의 예방 및 치료에 대한 제약 연구의 재료로 가치가 있음을 시사하며, 보이차의 구체적인 지표물질을 확인하고 이에 대한 추가연구가 필요할 것으로 보인다.

Keywords

References

  1. C. H. Jeong, 1st Author et al. (2009). Phenolic ontent, Antioxidant Effect and Acetylcholinesterase Inhibitory Activity of Korean Commercial Green, Puer, Oolong, and Black Teas. Kor J Food Preserv. 16(1), 230-237.
  2. H.U. Gali, E.M. Perchellet, X. M Gao, J. J. Karchesy, J. P. Perchellet. (1994). Comparison of the inhibitory effects of monomeric, dimeric, and trimeric procyanidins on the biochemical markers of skin tumor promotion in mouse epidermis in vivo. Planta Med. 60(3), 235-239. https://doi.org/10.1055/s-2006-959466
  3. J. Castillo, 1st Author et al. (2000). Antioxidant activity and radioprotective effects against chromosomal damage induced in vivo by X-rays of flavan-3-ols (Procyanidins) from grape seeds (Vitis vinifera): comparative study versus other phenolic and organic compounds. J Agric Food Chem. 48(5), 1738-1745. https://doi.org/10.1021/jf990665o
  4. B. P. Gaire, 1st Author et al. (2013). Terminalia chebula extract protects OGD-R induced PC12 cell death and inhibits lps induced microglia activation. Molecules. 18(3), 3529-3542. https://doi.org/10.3390/molecules18033529
  5. A. Sarvazyan, O. Rudenko, S Aglyamov, S Emelianov. (2014). Muscle as a molecular machine for protecting joints and bones by absorbing mechanical impacts. Med Hypotheses. 83(1), 6-10. https://doi.org/10.1016/j.mehy.2014.04.020
  6. S. K. Powers, G.S. Lynch, K.T. Murphy, M.B. Reid, I. Zijdewind. (2016). Disease-Induced Skeletal Muscle Atrophy and Fatigue. Med Sci Sport Exer. 48(11), 2307-2319. https://doi.org/10.1249/MSS.0000000000000975
  7. F. Mourkioti, N. Rosenthal. (2005). IGF-1, inflammation and stem cells: interactions during muscle regeneration. Trends Immunol. 26(10), 535-542. https://doi.org/10.1016/j.it.2005.08.002
  8. M. D. Grounds. (1999). Muscle regeneration: molecular aspects and therapeutic implications. Curr Opin Neurol. 12(5), 535-543. https://doi.org/10.1097/00019052-199910000-00007
  9. D. P. Zipes, J. Jalife, G. Petrone, P. Punjabi. (2015). Cardiac Electrophysiology: From Cell to Bedside, 6th edition. Amsterdam : Elsevier.
  10. P. Menasche, 1st Author et al. (2001). Myoblast transplantation for heart failure. Lancet. 357(9252), 279-280. https://doi.org/10.1016/S0140-6736(00)03617-5
  11. H.C. Jang, (2018). Korean SSG How to Diagnose Sarcopenia in Korean Older Adults? Ann Geriatr Med Res. 22(2), 73-79. https://doi.org/10.4235/agmr.2018.22.2.73
  12. R. Dodds, A. A. Sayer. (2016). Sarcopenia and frailty: new challenges for clinical practice. Clin Med. 16(5), 455-458. https://doi.org/10.7861/clinmedicine.16-5-455
  13. E. Elster, T. Riall, S. Taylor, S. Vickers, R. Martin, W. Pories. (2016). Inclusion of Sarcopenia Outperforms the Modified Frailty Index in Predicting 1-Year Mortality among 1,326 Patients Undergoing Gastrointestinal Surgery for a Malignant Indication Discussion. J Am Coll Surgeons. 222(4), 397-407. https://doi.org/10.1016/j.jamcollsurg.2015.12.020
  14. K. M. Choi. (2016). Sarcopenia and sarcopenic obesity. Kor J Intern Med. 31(6), 1054-1060. https://doi.org/10.3904/kjim.2016.193
  15. N. Binkley, B. Buehring. (2009). Beyond FRAX (R): It's Time to Consider "Sarco-Osteopenia". J Clin Densitom. 12(4), 413-416. https://doi.org/10.1016/j.jocd.2009.06.004
  16. J. E. Morley. (2008). Sarcopenia: Diagnosis and treatment. J Nutr Health Aging. 12(7), 452-456. https://doi.org/10.1007/BF02982705
  17. R. Simons, R. Andel. (2006). The effects of resistance training and walking on functional fitness in advanced old age. J Aging Health. 18(1), 91-105. https://doi.org/10.1177/0898264305281102
  18. F. A. Alsolmei, H. W. Li, S. L Pereira, P. Krishnan, P. W. Johns, R. A. Siddiqui. (2019). Polyphenol-Enriched Plum Extract Enhances Myotubule Formation and Anabolism while Attenuating Colon Cancer-induced Cellular Damage in C2C12 Cells. Nutrients. 11(5), 1077. https://doi.org/10.3390/nu11051077
  19. I. Y. Kim, C. K. Zhoh, S. R. Han, Y. B. Bang, R. Y. Li. (2013). Anti-oxidative Activity and Moisturizing Effect of Fermented Puer Tea Extract. J Kor Applied Science & Technology. 30(2), 272-279.
  20. T. B. Napotnik, M. Rebersek, P. T. Vernier, B. Mali, D. Miklavcic. (2016). Effects of high voltage nanosecond electric pulses on eukaryotic cells (in vitro): A systematic review. Bioelectrochemistry. 110, 1-12. https://doi.org/10.1016/j.bioelechem.2016.02.011
  21. O. J. Kang. Isolation and Identification of Yeast Strain from Fermented Tea. Kor J food & cookery science. 24(1), 11-15.
  22. X. M. Zang. (1986). Bonchogangmogseub-yu. Hongkong : Commercial Press.
  23. Y. H. Chung, M. K. Shin. (2005). A Study on the Physicochemical Properties of Korean Teas according to Degree of Fermentation. The Korean Society of Food and Nutrition. 18(1), 94-101.
  24. Y. Oi, I. C. Hou, H. Fujita, K. Yazawa. (2012). Antiobesity Effects of Chinese Black Tea (Pu-erh Tea) Extract and Gallic Acid. Phytother Res. 26(4), 475-481. https://doi.org/10.1002/ptr.3602
  25. H. J. Bae, J. H. Kim (2020). Green tea extract containing enhanced levels of epimerized catechins attenuates scopolamine-induced memory impairment in mice. Journal of Ethnopharmacology. 258, 112923. https://doi.org/10.1016/j.jep.2020.112923
  26. Y. Rolland, 1st Author et al. (2008). Sarcopenia: Its assessment, etiology, pathogenesis, consequences and future perspectives. J Nutr Health Aging. 12(7), 433-450. https://doi.org/10.1007/BF02982704
  27. H. K. Kamel, D. Maas, E. H. Duthie. (2002). Role of hormones in the pathogenesis and management of sarcopenia. Drug Aging. 19(11), 865-877. https://doi.org/10.2165/00002512-200219110-00004
  28. C. Y. Wang, L. Bai. (2012). Sarcopenia in the elderly: Basic and clinical issues. Geriatr Gerontol Int. 12(3), 388-396. https://doi.org/10.1111/j.1447-0594.2012.00851.x
  29. M. Maggio, F. Lauretani, G. P. Ceda. (2013). Sex hormones and sarcopenia in older persons. Curr Opin Clin Nutr. 16(1), 3-13.
  30. R. Weindruch. (1995). Interventions Based on the Possibility That Oxidative Stress Contributes to Sarcopenia. J Gerontol a-Biol. 50, 157-61.
  31. A. D. Iorio, 1st Author et al. (2006). Sarcopenia: Age-related skeletal muscle changes from determinants to physical disability. Int J Immunopath Ph. 19(4), 703-719. https://doi.org/10.1177/039463200601900401
  32. T. V. Zglinicki, C. M. Martin-Ruiz. (2005). Telomeres as biomarkers for ageing and age-related diseases. Curr Mol Med. 5(2), 197-203. https://doi.org/10.2174/1566524053586545
  33. Schriner SE, 1st Author et al. (2005). Extension of murine life span by overexpression of catalase targeted to mitochondria. Science. 308(5730), 1909-1911. https://doi.org/10.1126/science.1106653
  34. Y. S. Bae, H. Oh, S. G. Rhee, D. Y. Yoo. (2011). Regulation of reactive oxygen species generation in cell signaling. Mol Cells. 32(6), 491-509. https://doi.org/10.1007/s10059-011-0276-3
  35. C. E. Cross, 1st Author et al. (1987). Oxygen Radicals and Human-Disease. Ann Intern Med. 107(4), 526-545. https://doi.org/10.7326/0003-4819-107-4-526
  36. S. K. Powers, L. L. Ji, A. N Kavazis, M. J. Jackson. (2011). Reactive Oxygen Species: Impact on Skeletal Muscle. Compr Physiol. 1(2) , 941-969.
  37. B. Mintz, W. W. Baker. (1967). Normal mammalian muscle differentiation and gene control of isocitrate dehydrogenase synthesis. Proc Natl Acad Sci U S A. 58(2), 592-598. https://doi.org/10.1073/pnas.58.2.592
  38. J. S. Straeter, 1st Author et al. (2011). Characterization of human myoblast differentiation for tissue-engineering purposes by quantitative gene expression analysis. J Tissue Eng Regen Med. 5(8), e197-206. https://doi.org/10.1002/term.417
  39. A. J. Wagers, I. M. Conboy. (2005). Cellular and molecular signatures of muscle regeneration: current concepts and controversies in adult myogenesis. Cell. 122(5), 659-667. https://doi.org/10.1016/j.cell.2005.08.021
  40. A. Levinovitz, E. Jennische, A. Oldfors, D. Edwall, G. Norstedt. (1992). Activation of insulin-like growth factor II expression during skeletal muscle regeneration in the rat: correlation with myotube formation. Mol Endocrinol. 6(8), 1227-1234. https://doi.org/10.1210/me.6.8.1227