초록
본 연구의 배경은 최근 포스트 코로나시대의 비대면 행정서비스를 위한 주요 정책수단으로 기계학습 행정서비스가 주목을 받고 있는 가운데 기계학습 행정서비스를 시범적으로 운영하고 있는 서울특별시를 대상으로 기계학습 행정서비스 도입 시 효과가 예상되는 업무유형에 대하여 살펴보았다. 연구방법으로는 2020년 7월 한 달 동안 기계학습 기반 행정서비스를 활용하거나 수행하고 있는 서울시 행정조직을 대상으로 설문조사를 실시하여 조직단위별 도입 가능한 기계학습 행정서비스 및 응용서비스를 분석하고, 지도학습, 비지도학습, 강화학습 등 기계학습 행정서비스의 업무유형별 특성을 분석하였다. 그 결과, 지도학습 및 비지도학습 업무유형의 특성에서 유의미한 차이가 있는 것으로 나타났고, 특히 강화학습 업무유형이 기계학습 행정서비스에 가장 적합한 업무적 특성요인을 포함하고 있는 것으로 밝혀져 그에 대한 정책적 시사점을 도출하였다. 본 연구결과는 기계학습 행정서비스를 도입하고자 하는 실무자들에게는 참고자료로 제공될 수 있고, 향후 기계학습 행정서비스를 연구하고자 하는 연구자들에게는 연구의 기초자료로 활용될 수 있을 것이다.
The background of this study is that machine learning administrative services are recently attracting attention as a major policy tool for non-face-to-face administrative services in the post-corona era. This study investigated the types of work expected to be effective when introducing machine learning administrative services for Seoul Metropolitan Government officials who are piloting machine learning administrative services. The research method is a machine that can be introduced by organizational unit by distributing and collecting questionnaires for Seoul administrative organizations that have performed machine learning-based administrative services for one month in July 2020 targeting Seoul public officials using machine learning-based administrative services. By analyzing the learning administration service and application service, the business characteristics of each machine learning administration service type such as supervised learning work type, unsupervised learning work type, and reinforced learning work type were analyzed. As a result of the research analysis, it was found that there were significant differences in the characteristics of administrative tasks by supervised and unsupervised learning areas. In particular, it was found that the reinforcement learning domain contains the most appropriate business characteristics for machine learning administrative services. Implications were drawn. The results of this study can be provided as a reference material to practitioners who want to introduce machine learning administration services, and can be used as basic data for research to researchers who want to study machine learning administration services in the future.