DOI QR코드

DOI QR Code

이미지 분석시스템을 이용한 부선컬럼에서 기포크기의 측정

Measurement of Bubble Size in Flotation Column using Image Analysis System

  • 안기선 (조선대학교 에너지자원공학과) ;
  • 전호석 (한국지질자원연구원 광물자원연구본부) ;
  • 박철현 (조선대학교 에너지자원공학과)
  • An, Ki-Seon (Dept. of Energy and Resources Engineering, Chosun University) ;
  • Jeon, Ho-Seok (Resource Recovery Research Center, Mineral Resources Research Division, Korea Institute of Geoscience and Mineral Resources (KIGAM)) ;
  • Park, Chul-Hyun (Dept. of Energy and Resources Engineering, Chosun University)
  • 투고 : 2020.12.10
  • 심사 : 2020.12.23
  • 발행 : 2020.12.30

초록

기포크기는 컬럼부선에서 기포체류시간, 기포표면적플럭스(Sb) 및 운송율(Cr)에 영향을 미치는 중요 변수로 인식되고 있다. 본 논문은 부선컬럼에서 기포크기의 측정방법, 가동변수들의 관계 그리고 가스분산특성을 논한다. 기포크기는 고속카메라와 이미지 분석 시스템을 이용하여 가동변수들(가스속도, 세척수속도, 기포제농도)의 조건에 따라 부선컬럼에서 직접적으로 측정되었다. 각 측정과 산정된 기포크기 값들을 비교한 관계식이 ±15~20의 오차범위 내에서 도출되었고 평균 기포크기(Sauter mean diameter)는 0.718mm로 확인되었다. 본 시스템으로부터 기포크기 및 분포를 조절할 수 있는 경험식이 가동조건들(Jg: 0.65~1.3cm/s, JW: 0.13~0.52cm/s, frother concentration: 60~200ppm) 하에서 개발되었다. 기포제농도의 증가는 표면장면과 기포크기를 감소시킨다. 임계병합농도는 표면장력이 가장 낮은 49.24mN/m일 때인 기포제농도 200ppm이라고 판단된다. 공기속도의 감소, 기포제농도 및 세척수속도의 증가에 따라 기포크기가 감소하는 경향을 보였다. 가스홀드업은 가스속도와 비례관계에 있으며 고정된 가스속도 조건에서 기포제농도 및 세척수속도와 비례관계였다.

Bubble size in froth flotation has long been recognized as a key factor which affects the bubble residence time, the bubble surface area flux (Sb) and the carrying rate (Cr). This paper presents method of bubble size measurement, relationship between operating variables and gas dispersion properties in flotation column. Using high speed camera and image analysis system, bubble size has been directly measured as a function of operating parameters (e.g., superficial gas rate (Jg), superficial wash water rate (Jw), frother concentration) in flotation column. Relationship compared to measured and estimated bubble size was obtained within error ranges of ±15~20% and mean bubble size was 0.718mm. From this system the empirical relationship to control the bubble size and distribution has been developed under operating conditions such as Jg of 0.65~1.3cm/s, Jw of 0.13~0.52cm/s and frother concentration of 60~200ppm. Surface tension and bubble size decreased as frother concentration increased. It seemed that critical coalescence concentration (CCC) of bubbles was 200ppm so that surface tension was the lowest (49.24mN/m) at frother concentration of 200ppm. Bubble size tend to increase when superficial gas rate (Jg) decreases and superficial wash water rate Jw and frother concentration increase. Gas holdup is proportional to superficial gas rate as well as frother concentration and superficial wash water rate (at the fixed superficial gas rate).

키워드

참고문헌

  1. Gomez, C. O., Finch, J. A., 2007 : Gas dispersion measurements in flotation cells, International journal of Mineral Processing, 84(1-4), pp.51-58. https://doi.org/10.1016/j.minpro.2007.03.009
  2. Vinnett, L., Yianatos, J., Alvarez, M., 2014 : Gas dispersion measurements in mechanical flotation cells: Industrial experience in Chilean concentrators, Minerals Engineering, 57, pp.12-15. https://doi.org/10.1016/j.mineng.2013.12.006
  3. Masliyah, J. H., 1979 : Hindered settling in a multi-species particle system, Chemical Engineering Science, 34(9), pp. 1166-1168. https://doi.org/10.1016/0009-2509(79)85026-5
  4. Yianatos, J. B., Finch, J. A., Dobby, G. S., et al., 1988 : Bubble size estimation in a bubble swarm, Journal of Colloid and Interface Science, 126(1), pp.37-44. https://doi.org/10.1016/0021-9797(88)90096-3
  5. Chen, F., Gomez, C. O., Finch, J. A., 2001 : Bubble size measurement in flotation machines, Minerals Engineering, 14(4), pp.427-432. https://doi.org/10.1016/S0892-6875(01)00023-1
  6. Rodrigues, R. T., Rubio, J., 2003 : New basis for measuring the size distribution of bubbles, Minerals Engineering, 16(8), pp.757-765. https://doi.org/10.1016/S0892-6875(03)00181-X
  7. Schwarz, S., Alexander, D., 2006 : Gas dispersion measurements in industrial flotation cells, Minerals Engineering, 19(6-8), pp.554-560. https://doi.org/10.1016/j.mineng.2005.09.022
  8. Ata, S., Ahmed, N., Jameson, G. J., 2003 : A study of bubble coalescence in flotation froths, International Journal of Mineral Processing, 72(1-4), pp.255-266. https://doi.org/10.1016/S0301-7516(03)00103-0
  9. Lin, B., Recke, B., Knudsen, J. K., et al., 2008 : Bubble size estimation for flotation processes, Minerals Engineering, 21(7), pp.539-548. https://doi.org/10.1016/j.mineng.2007.11.004
  10. Vadlakonda, B., Mangadoddy, N., 2017 : Hydrodynamic study of two phase flow of column flotation using electrical resistance tomography and pressure probe techniques, Separation and Purification Technology, 184, pp.168-187. https://doi.org/10.1016/j.seppur.2017.04.029
  11. Vazirizadeh, A., Bouchard, J., Chen, Y., 2016 : Effect of particles on bubble size distribution and gas hold-up in column flotation, International Journal of Mineral Processing, 157, pp.163-173. https://doi.org/10.1016/j.minpro.2016.10.005
  12. Finch, J. A., Dobby, G. S., 1991 : Column Flotation, pp. 16-18, Pergamon Press, Oxford, England.
  13. Banisi, S., Finch, J. A., Laplante, A. R., et al., 1995 : Effect of solid particles on gas holdup in flotation columns-I. Measurement, Chemical Engineering Science, 50(14), pp. 2329-2334. https://doi.org/10.1016/0009-2509(95)00075-G
  14. Cho, Y. S., Laskowski, J. S., 2002a : Bubble coalescence and its effect on dynamic foam stability. Canadian Journal of Chemical Engineering, 80(2), pp.299-305. https://doi.org/10.1002/cjce.5450800216
  15. Cho, Y. S., Laskowski, J. S., 2002b : Effect of flotation frothers on bubble size and foam stability. International Journal of Mineral Processing, 64(2-3), pp.69-80. https://doi.org/10.1016/S0301-7516(01)00064-3
  16. Tan, Y. H., Rafiei, A. A., Elmahdy, A., et al., 2013 : Bubble size, gas holdup and bubble velocity profile of some alcohols and commercial frothers, International Journal of Mineral Processing, 119, pp.1-5. https://doi.org/10.1016/j.minpro.2012.12.003
  17. Nesset, J. E., Hernandez-Aguilar, J. R., Acuna, C., et al., 2006 : Some gas dispersion characteristics of mechanical flotation machines, Minerals Engineering, 19(6-8), pp.807-815. https://doi.org/10.1016/j.mineng.2005.09.045
  18. Ravichandran, V., Eswaraiah, C., Sakthivel, R., et al., 2013 : Gas dispersion characteristics of flotation reagents, Powder Technology, 235, pp.329-335. https://doi.org/10.1016/j.powtec.2012.10.039
  19. Lichti, M., Bart, H. J., 2018 : Bubble size distributions with a shadowgraphic optical probe, Flow Measurement and Instrumentation, 60, pp.164-170. https://doi.org/10.1016/j.flowmeasinst.2018.02.020
  20. Han, O. H., Kang, H. H., 2006 : A study on Flotation of Crystalline Graphite by Microbubble Column. Journal of the Korean Institute of Resources Recycling, 15(2), pp. 37-44.