DOI QR코드

DOI QR Code

Study on the Interaction between Depressants Zinc Sulfate and Xanthate on the Flotation of Sphalerite

섬아연석 억제제인 황산아연과 잔세이트의 상호 작용에 관한 연구

  • KIM, Minkyu (University of Science and Technology, UST) ;
  • YOU, Kwangsuk (Korea Institute of Geoscience and Mineral Resources, Department of Mineral Resource)
  • 김민규 (한국과학기술연합대학원) ;
  • 유광석 (한국지질자원연구원 DMR융합연구단)
  • Received : 2020.11.17
  • Accepted : 2020.12.10
  • Published : 2020.12.30

Abstract

In this study, the depression behavior of zinc sulfate on the sphalerite with the addition of potassium butyl xanthate was investigated to clear the relationship between zinc sulfate and xanthate in depression of sphalerite. As a result of the experiment, it was confirmed that the depress effect of zinc sulfate on the sphalerite declined with the increase of its addition amount. From the results of SEM-EDS and FT-IR analysis, it was found out that the amorphous precipitate of metal xanthate (Zn-BX) was formed in sphalerite concentrate, when the solubility product of [Zn+]·[BX] in the pulp solution exceeded 3.71×10-11, which is the solubility of Zn-butyl xanthate. It is considered that the Zn-butyl xanthate had a negative effect on the depression of sphalerite.

섬아연석(Sphalerite, ZnS)을 대상으로 억제제 황산아연(zinc sulfate, ZnSO4)과 포수제인 포타슘 부틸 잔세이트(potassium butyl xanthate(KBX), C5H9KOS2)과의 상호 작용 및 이에 따른 섬아연석의 억제 거동을 규명하고자 섬아연석 부유 선별 실험을 진행했다. 실험 결과, 억제제인 황산아연 첨가량이 일정 농도 이상에서는 KBX의 첨가로 섬아연석의 오히려 억제 효과가 떨어졌다. 할리몬드 튜브(Hallimond Tube) 부유선별 실험을 통해 얻어진 정광과 맥석을 대상으로 주사형 전자현미경/X선 분광분석(Scanning electron microscope/energy dispersive spectroscopy, SEM-EDS: TM3000, Tabletop Microscope, HITACH)과 푸리에 변환 적외선분광법(Fourier-transform infrared spectroscopy, FT-IR: NICOLET 6700, Thermo SCIENTIFIC)로 분석한 결과 정광에서는 비정질의 Zn-butyl xanthate(Zn-BX)가 생성되어 광물 입자에 흡착되어 있는 것을 확인 했다. 이러한 생성물은 용액 내 첨가된 황산아연의 용해에 따른 잔류 Zn 이온과 KBX 이온이 반응하여 생성되었다. 즉, 용액의 [Zn+]·[BX] 용해도 곱이 3.71×10-11 이상에서 Zn-butyl xanthate이 생성되며, 이로 인해 섬아연석 억제에 부정적인 영향을 끼치는 것으로 나타났다.

Keywords

References

  1. Barry A. Wills, James A. Finch, 2016 : WIll's Mineral Processing Technology : An introduction to the Practical Aspects of Ore Treatment and Minerals Recovery Eight Edition, Elsevier.
  2. Bao Guo, Yongjun Peng, Rodolfo Espinosa-Gomez, 2014 : Cyanide chemistry and its effect on mineral flotation, Minerals Engineering, 66-68, pp.25-32. https://doi.org/10.1016/j.mineng.2014.06.010
  3. M.D. Seke, P.C. Pistorius, 2006 : Effect of cuprous cyanide, dry and wet milling on the selective flotation of galena and sphalerite, Minerals Engineering, 19(1), pp.1-11. https://doi.org/10.1016/j.mineng.2005.03.005
  4. Jianmin Li, Kaiwei Song, Dianwen Liu, et al., 2017 : Hydrolyzation and adsorption behaviors of SPH and SCT used as combined depressants in the selective flotation of galena from sphalerite, Journal of Molecular Liquids, 231, pp.485-490. https://doi.org/10.1016/j.molliq.2017.02.035
  5. Jian Liu, Yu Wang, Deqiang Luo, et al., 2018 : Use of ZnSO4 and SDD mixture as sphalerite depressant in copper flotation, Journal of Minerals Engineering, 121, pp.31-38. https://doi.org/10.1016/j.mineng.2018.03.003
  6. Han Wang, Shuming Wen, Guang Han, et al., 2020 : Activation mechanism of lead ions in the flotation of sphalerite depressed with zinc sulfate, Journal of Minerals Engineering, 146, 106132. https://doi.org/10.1016/j.mineng.2019.106132
  7. MIngli Cao, Qi Liu, 2006 : Reexamining the functions of zinc sulfate as a selective depressant in differential sulfide flotation-The role of coagulation, Journal of Colloid and interface Science, 301(2), pp.523-531. https://doi.org/10.1016/j.jcis.2006.05.036
  8. Jan Drzymala, 1994 : Characterization of materials by Hallimond tube flotation, Part 1 : Maximum size of entrained particles, International Journal of Mineral Processing, 42 (3-4), pp.139-152. https://doi.org/10.1016/0301-7516(94)00036-0
  9. L.H. Little, G.W. Poling, J. Leja, 1961 : Infrared spectra of xanthate compounds: II. assignment of vibrational frequencies, Canadian Journal of Chemistry, 39(4), pp.745-754. https://doi.org/10.1139/v61-090
  10. J.O. Leppinen, 1990 : FTIR and flotation investigation of the adsorption of ethyl xanthate on activated and nonactivated sulfide minerals, International Journal of Mineral Processing, 30(3-4), pp.245-263. https://doi.org/10.1016/0301-7516(90)90018-T
  11. Yahui Zhang, Zhao Cao, Yongdan Cao, et al., 2013 : FTIR studies of xanthate adsorption on chalcopyrite, pentlandite and pyrite surfaces, Journal of Molecular Structure, 1048, pp.434-440. https://doi.org/10.1016/j.molstruc.2013.06.015
  12. M.L. larsson, A. Holmgren, W. Forsling, 2000 : Xanthate adsorbed on studied by polarized FTIR-ATR Spectorscopy, Langmuir, 16(21), pp.8129-8133. https://doi.org/10.1021/la000454+
  13. M.C. Furstenau, T.W. Healy, P. Somasundaran, 1964 : The role of the hydrocarbon chain of alkyl collectors in flotation, Trans AIME.
  14. M.C. Furstenau, K.L. Cliffored, M.C. Kuhn, 1974 : The role of zinc-xanthate precipitation in sphalerite flotation, International Journal of Mineral Processing, 1(4), pp.307-318. https://doi.org/10.1016/0301-7516(74)90002-7