DOI QR코드

DOI QR Code

Effect of Zinc Based Anodes on Self-Discharge Behavior for Zinc-Air Batteries

아연-공기 전지용 음극재의 자가방전 억제 효과

  • Jung, Min Seo (Department of Advanced Materials & Chemical Engineering, College of Engineering, Halla University) ;
  • Jo, Yong Nam (Department of Advanced Materials & Chemical Engineering, College of Engineering, Halla University)
  • 정민서 (한라대학교 공과대학 신소재화학공학과) ;
  • 조용남 (한라대학교 공과대학 신소재화학공학과)
  • Received : 2020.11.10
  • Accepted : 2020.11.23
  • Published : 2020.12.27

Abstract

For zinc-air batteries, there are several limitations associated with zinc anodes. The self-discharge behavior of zinc-air batteries is a critical issue that is induced by corrosion reaction and hydrogen evolution reaction (HER) of zinc anodes. Aluminum and indium are effective additives for controlling the hydrogen evolution reaction as well as the corrosion reaction. To enhance the electrochemical performances of zinc-air batteries, mechanically alloyed Zn-Al and Zn-In materials with different compositions are successfully fabricated at 500rpm and 5h milling time. Investigated materials are characterized by X-ray diffractometer (XRD), field emission scanning electron microscope (FE-SEM), and energy dispersive spectrometer (EDS). Alloys are investigated for the application as novel anodes in zinc-air batteries. Especially, the material with 3 wt% of indium (ZI3) delivers 445.37 mAh/g and 408.52 mAh/g of specific discharge capacity with 1 h and 6 h storage, respectively. Also, it shows 91.72 % capacity retention and has the lowest value of corrosion current density among attempted materials.

Keywords

References

  1. Y. N. Jo, S. H. Kang, K. Prasanna, S. W. Eom and C. W. Lee, Appl. Surf. Sci., 422, 406 (2017). https://doi.org/10.1016/j.apsusc.2017.06.033
  2. J. W. Park, Korean J. Mater. Res., 16, 297 (2006). https://doi.org/10.3740/MRSK.2006.16.5.297
  3. Y. N. Jo, K. Prasanna, S. H. Kang, PR. Llango, H. S. Kim, S.W. Eom and C. W. Lee, J. Ind. Eng. Chem., 53, 247 (2017). https://doi.org/10.1016/j.jiec.2017.04.032
  4. D. W. Park, J. W. Kim, J. K. Lee and J. Y. Lee, Appl. Chem. Eng., 23, 359 (2012).
  5. J. W. Han, Korean J. Mater. Res., 29, 798 (2019). https://doi.org/10.3740/MRSK.2019.29.12.798
  6. J. E. Park, Korean J. Mater. Res., 29, 812 (2019). https://doi.org/10.3740/MRSK.2019.29.12.812
  7. J. Y. Kim, H. I. Lee, T. Y. Oh and S. M. Park, Korean J Electrochem. Soc., 14, 231 (2011). https://doi.org/10.5229/JKES.2011.14.4.231
  8. Y. H. Kim, J. KIEEME., 23, 1002 (2010).
  9. I. H. Yoo and H. T. Seo, Korean J. Mater. Res., 26, 241 (2016). https://doi.org/10.3740/MRSK.2016.26.5.241
  10. A. Puapattanakul, S. Therdthianwong, A. Therdthianwong and N. Wongyao, Energy Procedia, 34, 174 (2013).
  11. S. M. Lee, Y. J. Kim, S. W. Eom, N. S. Choi, K. W. Kim and S. B. Cho, J. Power Sources, 227, 177 (2013). https://doi.org/10.1016/j.jpowsour.2012.11.046
  12. C. W. Lee, K. Sathiyanarayanan, S. W. Eom and M. S. Yun, J. Power Sources, 160, 1436 (2006). https://doi.org/10.1016/j.jpowsour.2006.02.019
  13. C. J. Lan, T. S. Chin, P. H. Lin and T. P. Perng. J. New Mater, Electrochem. Syst., 9, 27 (2006).