DOI QR코드

DOI QR Code

Alleviating effects of the mixture of Elaeagnus multiflora and Cynanchum wilfordii extracts on testosterone deficiency syndrome

  • Jung, Myung-A (Jeonnam Bioindustry Foundation, Center of Natural Resources Research (JCNR)) ;
  • Shin, Jawon (Jeonnam Bioindustry Foundation, Center of Natural Resources Research (JCNR)) ;
  • Jo, Ara (Jeonnam Bioindustry Foundation, Center of Natural Resources Research (JCNR)) ;
  • Kang, Huwon (Jeonnam Bioindustry Foundation, Center of Natural Resources Research (JCNR)) ;
  • Lee, Gyuok (Jeonnam Bioindustry Foundation, Center of Natural Resources Research (JCNR)) ;
  • Oh, Dool-Ri (Jeonnam Bioindustry Foundation, Center of Natural Resources Research (JCNR)) ;
  • Yun, Hyo Jeong (Jeonnam Bioindustry Foundation, Center of Natural Resources Research (JCNR)) ;
  • Im, Sojeong (Jeonnam Bioindustry Foundation, Center of Natural Resources Research (JCNR)) ;
  • Bae, Donghyuck (Jeonnam Bioindustry Foundation, Center of Natural Resources Research (JCNR)) ;
  • Kim, Jaeyong (Jeonnam Bioindustry Foundation, Center of Natural Resources Research (JCNR)) ;
  • Choi, Chul-yung (Jeonnam Bioindustry Foundation, Center of Natural Resources Research (JCNR))
  • Received : 2020.10.13
  • Accepted : 2020.11.27
  • Published : 2020.12.31

Abstract

Testosterone deficiency syndrome (TDS), also known as late-onset hypogonadism, is a clinical and biochemical syndrome associated with advanced age and characterized by deficient serum testosterone levels. The Elaeagnus multiflora fruit (EMF) and Cynanchum wilfordii (CW) have been used in traditional herbal medicine. This study aimed to investigate the therapeutic effects of EMF and CW mixtures (at the ratios of 3:7, 5:5, and 7:3) on TDS using TM3 cells and aging male rats. EMF, and mixtures of EMF and CW (at the ratios of 3:7, 5:5, and 7:3) significantly increased testosterone levels in TM3 cells (p <0.05). The rats were orally administered EMCW (EMF and CW mixed at the ratio of 3:7 50, 100 and 200 mg/kg/day) for 4 weeks consecutively. After 4 weeks of EMCW administration, latency time on the rotarod test, and serum testosterone and dehydroepiandrosterone sulfate levels were significantly increased (p <0.05 and p <0.01). Moreover, the levels of globulin-bound sex hormones were decreased in the EMCW-fed groups. However, prostate-specific antigen levels did not differ among the groups. These results suggest that EMCW can be effectively used to alleviate TDS.

Keywords

References

  1. Hanker FD (1977) Sexual, psychic and physical complaints in 50 middle-aged men. Psychosomatics 18(5): 23-27 https://doi.org/10.1016/S0033-3182(77)71042-4
  2. Harman SM, Metter EJ, Tobin JD (2001) Longitudinal effects of aging on serum total and free testosterone levels in healthy men. Baltimore Longitudinal Study of Aging. J Clin Endocrinol Metab 86(2): 724-731 https://doi.org/10.1210/jc.86.2.724
  3. Morales A, Schulman CC, Tostain JCW, Wu F (2006) Testosterone Deficiency Syndrome (TDS) needs to be named appropriately-the importance of accurate terminology. Eur Urol 50: 407-409 https://doi.org/10.1016/j.eururo.2006.07.001
  4. Wang C, Nieschlag E, Swerdloff R, Behre HM, Hellstrom L, Gooren LJ, Kaufman JM, Legross JJ, Lunenfeld B, Morles A, Morley JE, Schulman C, Thompson IM, Weidner W, Wu FCW (2009) ISA, ISSAM, EAU, EAA and ASA recommendations: Investigation, treatment and monitoring of late-onset hypogonadism in males. Int J Impot Res 21: 1-8 https://doi.org/10.1038/ijir.2008.41
  5. Haring R, Baumeister SE, Nauck M, Volzke H, Keevil BG, Brabant G, Wallaschocski H (2013) Testosterone and cardiometabolic risk in the general population the impact of measurement method on risk associations: a comparative study between immunoassay and mass spectrometry. Eur J Endocrinol 169(4): 1-22 https://doi.org/10.1530/EJE-13-0003
  6. Feldman HA, Longcope C, Derby CA (2002) Age trends in the level of serum testosterone and other hormones in middle-aged men: longitudinal results from the Massachusetts male aging study. J Clin Endocrinal Metab 87(2): 589-598 https://doi.org/10.1210/jcem.87.2.8201
  7. Su C, Rybalchenko N, Schreihofer DA, Singh M, Abbassi B, Cunningham RL (2011) Cell models for the study of sex steroid hormone neurobiology. J Steroid Hormone Sci 2: 1-9
  8. Nieschlag E, Swerdloff R, Behre HM, Gooren LJ, Kaufman JM, Legros J-J (2005) Investigation, treatment and monitoring of late-onset hypogonadism in males. Int J Androl 8: 56-58
  9. Sakamura F, Suga T (1987) Changes in chemical components of ripening oleaster fruits. Phytochemistry 26(9): 2481-2484 https://doi.org/10.1016/S0031-9422(00)83858-3
  10. Kim JG (2006) Illustrated natural drugs encyclopedia. Namsandong, Seoul, Korea, p 279
  11. Yoon KY, Hong JY, Nam HS, Moon YS, Shin SR (2007) Antioxidant activities and xanthine oxidase inhibitory effects of hot-water extracts from fruits of Elaeagnus multiflora Thunb. in maturity. J Korean Soc Food Sci Nutr 36(1): 14-19 https://doi.org/10.3746/JKFN.2007.36.1.014
  12. Hong JY, Nam HS, Lee YS, Yoon KY, Kim NW, Shin SR (2006) Study on the antioxidant activity of extracts from the fruit of Elaeagnus multiflora Thunb. Korea J Food Preserv 13(3): 413-419
  13. Kim SA, Oh SI, Lee MS (2007) Antioxidative and cytotoxic effects of solvent fractions from Elaeagnus multiflora. Korean J Food Nutr 20(2): 134-142
  14. Kim NW, Joo EY, Kim SL (2003) Analysis on the components of the fruit of Elaeagnus multiflora Thunb. Korean J Food Preserv 10: 534-539
  15. Hong JY, Nam HS, Lee YS, Kim NW, Shin SR (2006) Anti-oxidant activity of ethanol extracts from fruits of Elaeagnus multiflora Thunb. during maturation. Korean J Food Preserv 13(5): 643-648
  16. Shin SR, Hong JY, Yoon KY (2008) Antioxidant properties and total phenolic contents of cherry elaeagnus (Elaeagnus multiflora Thunb.) leaf extract. Food Sci Biotechnol 17(3): 608-612
  17. Lachowicz S, Kapusta I, Swieca M, Stinco CM, Melendez-Martinez AJ, Bieniek A (2020) In vitro biological activities of fruits and leaves of Elaeagnus multiflora Thunb. and their isoprenoids and polyphenolics profile. Antioxidants 9(5): 1-17
  18. Jung MA, Jo AR, Shin JW, Kang HW, Kim YJ, Oh DR, Choi CY (2020) Anti-fatigue effects of Elaeagnus multiflora fruit extracts in mice. J Appl Biol Chem 63(1): 69-74 https://doi.org/10.3839/jabc.2020.009
  19. Choi DH, Lee YJ, Kim J S, Kang DG, Lee HS (2012) Cynanchum wilfordii ameliorates hypertension and endothelial dysfunction in rats fed with high fat/cholesterol diets. Immunopharmacol Immunotoxicol 34(1): 4-11 https://doi.org/10.3109/08923973.2011.569889
  20. Lee HS, Choi JH, Kim YE, Kim IH, Kim BM, Lee CH (2013) Effects of the Cynanchum wilfordii ethanol extract on the serum lipid profile in hypercholesterolemic rats. Prev Nutr Food Sci 18(3): 157-162 https://doi.org/10.3746/pnf.2013.18.3.157
  21. Lee HS, Kim MH, Choi YY, Hong JK, Yang WM (2018) Effects of Cynanchum wilfordii on osteoporosis with inhibition of bone resorption and induction of bone formation. Mol Med Rep 17(3): 3758-3762
  22. Shan L, Liu RH, Shen YH, Zang WD, Zhang C, Wu DZ, Min L, Su J, Xu XK (2006) Gastroprotective effect of a traditional Chinese herbal drug 'Bioshouwu on experimental gastric lesions in rat. J Ethnopharmacol 107(3): 389-394 https://doi.org/10.1016/j.jep.2006.03.022
  23. Kim MS, Baek JH, Park JA, Hwang BY, Kim SE, Lee JJ, Kim KW (2005) Wilfoside KIN isolated from Cynanchum wilfordii inhibits angiogenesis and tumor cell invasion. Int J Oncol 26(6): 1533-1539
  24. Yang SB, Lee SM, Park JH, Lee TH, Baek NI, Park HJ, Lee HJ, Kim JY (2014) Cynandion A from Cynanchum wilfordii attenuates the production of inflammatory mediators in LPS-induced BV-2 microglial cells via NF-κB inactivation. Biol Pharm Bull 37(8): 1390-1396 https://doi.org/10.1248/bpb.b13-00939
  25. Lee GO, Kim JY, Pan SO, Kim M, Jun WJ, Choi CY (2016) Ahprodisiac property of the aqueous extract of Cynanchum wilfordii. J Food Nutr 4: 713-719
  26. Lee GO, Shin JW, Choi HJ, Jo AR, Pan SO, Bae DH, Lee YW, Choi CY (2017) Cynanchum wilfordii ameliorates testosterone-induced benign prostatic hyperplasia by regulation 5a-reductase and androgen receptor activities in a rat model. Nutrients 9(10): 1-15
  27. Mather JB (1980) Establishment and characterization of two distinct mouse testicular epithelial cell lines. Bio Reprod 23(1): 243-252 https://doi.org/10.1095/biolreprod23.1.243
  28. Sattler F, Bhasin S, He J, Chou CP, Castaneda-Sceppa C, Yarasheski K, Binder E, Schroeder ET, Kawakubo M, Zhang A, Roubenoff R, Azen S (2011) Testosterone threshold levels and lean tissue mass targets needed to enhance skeletal muscle strength and function: the HORMA trial. J Gerontol A Biol Sci Med Sci 66(1): 122-129
  29. Noh YH, Kim SH, Kim JY, Park JA, Kim OH, Han DS, Kim WY, Kim SS, Lee MY, Heo SH, Kim MS, Lee WB, Jeong YH, Myung SC (2012) Improvement of andropause symptoms by dandelion and rooibos extract complex CRS-10 in aging male. Nutr Res Pract 6(6): 505-512 https://doi.org/10.4162/nrp.2012.6.6.505
  30. Shea JL, Wong PY, Chen Y (2014) Free testosterone: Clinical utility and important analytical aspects of measurement. Adv Clin Chem 63: 59-84 https://doi.org/10.1016/B978-0-12-800094-6.00002-9
  31. Arlt W, Haas J, Callies F, Reincke M, Hubler D, Oettel M, Ernst M, Schulte HM, Allolio B (1999) Biotransformation of oral dehydroepiandrosterone in elderly men: significant increase in circulating estrogens. J Clin Endocrinol Metab 84(6): 2170-2176 https://doi.org/10.1210/jcem.84.6.5789
  32. Wang MC, Valenzuela LA, Murphy GP, Chu TM (1979) Purification of a human prostate specific antigen. Invest Urol 17(2): 159-163