DOI QR코드

DOI QR Code

금속 Powder Bed Fusion(PBF) 공정용 분말의 특성평가 방법 및 관련 연구 동향

Review on Characterization Method and Recent Research Trend about Metal Powder for Powder Bed Fusion (PBF) Process

  • 이빈 (한국생산기술연구원 한국희소금속산업기술센터) ;
  • 김대겸 (한국생산기술연구원 한국희소금속산업기술센터) ;
  • 김영일 (한국생산기술연구원 한국희소금속산업기술센터) ;
  • 김도훈 (한국생산기술연구원 한국희소금속산업기술센터) ;
  • 손용 (한국생산기술연구원 공정지능연구부문) ;
  • 박경태 (한국생산기술연구원 한국희소금속산업기술센터) ;
  • 김택수 (한국생산기술연구원 뿌리기술연구소)
  • Lee, Bin (Korea Institute for Rare Metals, Korea Institute of Industrial Technology) ;
  • Kim, Dae-Kyeom (Korea Institute for Rare Metals, Korea Institute of Industrial Technology) ;
  • Kim, Young Il (Korea Institute for Rare Metals, Korea Institute of Industrial Technology) ;
  • Kim, Do Hoon (Korea Institute for Rare Metals, Korea Institute of Industrial Technology) ;
  • Son, Yong (Intelligent Manufacturing R&D Department, Korea Institute of Industrial Technology) ;
  • Park, Kyoung-Tae (Korea Institute for Rare Metals, Korea Institute of Industrial Technology) ;
  • Kim, Taek-Soo (Research Institute of Advanced Manufacturing Technology)
  • 투고 : 2020.11.02
  • 심사 : 2020.11.30
  • 발행 : 2020.12.28

초록

A well-established characterization method is required in powder bed fusion (PBF) metal additive manufacturing, where metal powder is used. The characterization methods from the traditional powder metallurgy process are still being used. However, it is necessary to develop advanced methods of property evaluation with the advances in additive manufacturing technology. In this article, the characterization methods of powders for metal PBF are reviewed, and the recent research trends are introduced. Standardization status and specifications for metal powder for the PBF process which published by the ISO, ASTM, and MPIF are also covered. The establishment of powder characterization methods are expected to contribute to the metal powder industry and the advancement of additive manufacturing technology through the creation of related databases.

키워드

참고문헌

  1. S. A. M. Tofai, E. P. Koumoulos, A. Bandyopadhyay, S. Bose, L. O'Donoghue and C. Charitidis: Materials Today, 21 (2018) 22. https://doi.org/10.1016/j.mattod.2017.07.001
  2. C. Meier, R. Weissbach, J. Weinberg, W. A. Wall and A. J. Hart: J. Mater. Process. Technol., 266 (2019) 484. https://doi.org/10.1016/j.jmatprotec.2018.10.037
  3. Z. Snow, R. Martukanitz and S. Joshi: Addit. Manuf., 28 (2019) 78.
  4. J. A. M. Lerma, A. N. Nomm, K. E. Waters and M. Brochu: Materials, 11 (2018) 2386. https://doi.org/10.3390/ma11122386
  5. L. Lefebvre, J. Dai, Y. Thomas, M. Daroszewska and Y. M. Rubi: Mater. Perform. Charact., 9 (2020) 426.
  6. L. C. Tshabalala, N. Mathe and H. Chikwanda: Key Eng. Mater., 770 (2018) 3. https://doi.org/10.4028/www.scientific.net/kem.770.3
  7. L. I. Escano, N. D. Parab, L. Xiong, Q. Guo, C. Zhao, K. Fezzaa, W. Everhart, T. Sun and L. Chen: Sci. Rep., 8 (2018) 15079. https://doi.org/10.1038/s41598-018-33376-0
  8. S. Vock, B. Kloden, A. Kirchner, T. WeiBgarber and B. Kieback: Prog Addit. Manuf., 4 (2019) 383. https://doi.org/10.1007/s40964-019-00078-6
  9. S. Beitz, R. Uerlich, T. Bokelmann, A. Diener, T. Vietor and A. Kwade: Materials, 12 (2019) 297. https://doi.org/10.3390/ma12020297
  10. ISO/ASTM 52907, Additive manufacturing - Feedstock materials - Methods to characterize metallic powders.
  11. H. S. Lee, D. K. Kim, Y. I. Kim, J. E. Nam, Y. Son, T. S. Kim and B. Lee: J. Korean Powder Metall. Inst., 27 (2020) 44. https://doi.org/10.4150/KPMI.2020.27.1.44
  12. J. Zhang, D. Gu, Y. Yang, H. Zhang, H. Chen, D. Dai and K. Lin: Engineering, 5 (2019) 736. https://doi.org/10.1016/j.eng.2019.07.003
  13. ISO 3310-1, Test sieves - Technical requirements and testing - Part 1: Test sieves of metal wire cloth.
  14. ASTM E11, Standard specification for woven wire test sieve cloth and test sieves.
  15. ASTM B214, Standard test method for sieve analysis of metal powders.
  16. ISO 4497, Metallic powders - Determination of particle size by dry sieving.
  17. ISO 2591-1, Test sieving - Part 1: Methods using test sieves of woven wire cloth and perforated metal plate.
  18. ASTM B822, Standard test method for particle size distribution of metal powders and related compounds by light scattering.
  19. ISO 13320, Particle size analysis - Laser diffraction methods.
  20. J. Boes, A. Rottger, W. Theisen, C. Cui, V. Uhlenwinkel, A. Schulz, H. W. Zoch, F. Stern, J. Tenkamp and F. Walther: Addit. Manuf., 34 (2020) 101379.
  21. A. Plessis, P. Sperling, A. Beerlink, W. B. Preez and S. G. Roux: MethodsX, 5 (2018) 1336. https://doi.org/10.1016/j.mex.2018.10.021
  22. S. Vunnam, A. Saboo, C. Sudbrack and T. L. Starr: Addit. Manuf., 30 (2019) 100876.
  23. ISO 4490, Metallic powders - Determination of flow rate by means of a calibrated funnel (Hall flowmeter).
  24. ASTM B213, Standard test methods for flow rate of metal powders using the hall flowmeter funnel.
  25. ASTM B964, Standard test methods for flow rate of metal powders using the carney funnel.
  26. P. Mellin, O. Lyckfeldt, P. Harlin, H. Brodin, H. Blom and A. Strondl: Met. Powder Rep., 72 (2017) 322. https://doi.org/10.1016/j.mprp.2017.06.003
  27. ISO 13517, Metallic powders - Determination of flow rate by means of calibrated funnel (Gustavsson flowmeter).
  28. ASTM B212, Standard test method for apparent density of free-flowing metal powders using the hall flowmeter funnel.
  29. ISO 3923-1, Metallic powders - Determination of apparent density - Part 1: Funnel method.
  30. ASTM B417, Standard test method for apparent density of non-free-flowing metal powders using the carney funnel.
  31. ASTM B329, Standard test method for apparent density of metal powders and compounds using the scott volumeter.
  32. ASTM B703, Standard test method for apparent density of metal powders and related compounds using the arnold meter.
  33. ASTM B527, Standard test method for tap density of metal powders and compounds.
  34. ISO 3953, Metallic powders - Determination of tap density.
  35. M. A. Kaleem, M. Z. Alam, M. Khan, S. H. I. Jaffery and B. Rashid: Met Powder Rep., (2020).
  36. ASTM D6393, Standard test method for bulk solids characterization by carr indices.
  37. W. C. Sung: KATS Technical Reports, 75 (2015).
  38. F. Petzoldt and C. A. Kopp: Metal AM, 2 (2016) 45.
  39. ISO/ASTM 52900, Additive manufacturing - General principles - Terminology.
  40. ISO/ASTM 52901, Additive manufacturing - General principles - Requirements for purchased AM parts.
  41. ASTM F3049, Standard guide for characterizing properties of metal powders used for additive manufacturing processes.
  42. ASTM B855, Standard test method for volumetric flow rate of metal powders using the arnold meter and hall flowmeter funnel.
  43. ASTM B923, Standard test method for metal powder skeletal density by helium or nitrogen pycnometry.
  44. MPIF Standard 01, Method for sampling metal powders.
  45. MPIF Standard 02, Method for determination of loss of mass in a reducing atmosphere for metal powders (Hydrogen loss).
  46. MPIF Standard 03, Method for determination of flow rate of free-flowing metal powders using the hall apparatus.
  47. MPIF Standard 04, Method for determination of apparent density of free-flowing metal powders using the hall apparatus.
  48. MPIF Standard 05, Method for determination of sieve analysis of metal powders.
  49. MPIF Standard 28, Method for determination of apparent density of non-free-flowing metal powders using the carney apparatus.
  50. MPIF Standard 46, Method for determination of tap density of metal powders.
  51. MPIF Standard 48, Method for determination of apparent density of metal powders using the arnold apparatus.
  52. MPIF Standard 53, Method for measuring the volume of the apparent density cup used with the hall and carney apparatus.
  53. M. Krantz, H. Zhang and J. Zhu: Powder Technol., 194 (2009) 239. https://doi.org/10.1016/j.powtec.2009.05.001
  54. B. H. Kaye: Part. Part. Syst. Charact., 10 (1993) 191. https://doi.org/10.1002/ppsc.19930100407
  55. B. H. Kaye, J. G. Liimatainen and J. Lloyd: Part. Part. Syst. Charact., 12 (1995) 194. https://doi.org/10.1002/ppsc.19950120406
  56. A. N. Faqih, A. W. Alexander, F. J. Muzzio and M. S. Tomassone: Chem. Eng. Sci., 62 (2007) 1536. https://doi.org/10.1016/j.ces.2006.06.027
  57. ASTM D7891, Standard test method for shear testing of powders using the freeman technology FT4 powder rheometer shear cell.
  58. S. Hatami, O. Lyckfeldt, L. Tonnang and K. Fransson: Powder Metall., 60 (2017) 353. https://doi.org/10.1080/00325899.2017.1344451
  59. M. Ahmed, M. Pasha, W. Nan and M. Ghadiri: Powder Technol., 367 (2020) 671. https://doi.org/10.1016/j.powtec.2020.04.033
  60. N. E. Gorji, P. Saxena, M. Corfield, A. Clare, J. Rueff, J. Bogan, P. G. M. Gonzalez, M. Snelgrove, G. Hughes, R. O'Connor, R. Raghavendra and D. Brabazon: Mater. Charact., 161 (2020) 110167. https://doi.org/10.1016/j.matchar.2020.110167
  61. K. Riener, N. Albrecht, S. Ziegelmeier, R. Ramakrishnan, L. Haferkamp, A. B. Spierings and G. J. Leichtfried: Addit. Manuf., 34 (2020) 101286.