참고문헌
- S. A. M. Tofai, E. P. Koumoulos, A. Bandyopadhyay, S. Bose, L. O'Donoghue and C. Charitidis: Materials Today, 21 (2018) 22. https://doi.org/10.1016/j.mattod.2017.07.001
- C. Meier, R. Weissbach, J. Weinberg, W. A. Wall and A. J. Hart: J. Mater. Process. Technol., 266 (2019) 484. https://doi.org/10.1016/j.jmatprotec.2018.10.037
- Z. Snow, R. Martukanitz and S. Joshi: Addit. Manuf., 28 (2019) 78.
- J. A. M. Lerma, A. N. Nomm, K. E. Waters and M. Brochu: Materials, 11 (2018) 2386. https://doi.org/10.3390/ma11122386
- L. Lefebvre, J. Dai, Y. Thomas, M. Daroszewska and Y. M. Rubi: Mater. Perform. Charact., 9 (2020) 426.
- L. C. Tshabalala, N. Mathe and H. Chikwanda: Key Eng. Mater., 770 (2018) 3. https://doi.org/10.4028/www.scientific.net/kem.770.3
- L. I. Escano, N. D. Parab, L. Xiong, Q. Guo, C. Zhao, K. Fezzaa, W. Everhart, T. Sun and L. Chen: Sci. Rep., 8 (2018) 15079. https://doi.org/10.1038/s41598-018-33376-0
- S. Vock, B. Kloden, A. Kirchner, T. WeiBgarber and B. Kieback: Prog Addit. Manuf., 4 (2019) 383. https://doi.org/10.1007/s40964-019-00078-6
- S. Beitz, R. Uerlich, T. Bokelmann, A. Diener, T. Vietor and A. Kwade: Materials, 12 (2019) 297. https://doi.org/10.3390/ma12020297
- ISO/ASTM 52907, Additive manufacturing - Feedstock materials - Methods to characterize metallic powders.
- H. S. Lee, D. K. Kim, Y. I. Kim, J. E. Nam, Y. Son, T. S. Kim and B. Lee: J. Korean Powder Metall. Inst., 27 (2020) 44. https://doi.org/10.4150/KPMI.2020.27.1.44
- J. Zhang, D. Gu, Y. Yang, H. Zhang, H. Chen, D. Dai and K. Lin: Engineering, 5 (2019) 736. https://doi.org/10.1016/j.eng.2019.07.003
- ISO 3310-1, Test sieves - Technical requirements and testing - Part 1: Test sieves of metal wire cloth.
- ASTM E11, Standard specification for woven wire test sieve cloth and test sieves.
- ASTM B214, Standard test method for sieve analysis of metal powders.
- ISO 4497, Metallic powders - Determination of particle size by dry sieving.
- ISO 2591-1, Test sieving - Part 1: Methods using test sieves of woven wire cloth and perforated metal plate.
- ASTM B822, Standard test method for particle size distribution of metal powders and related compounds by light scattering.
- ISO 13320, Particle size analysis - Laser diffraction methods.
- J. Boes, A. Rottger, W. Theisen, C. Cui, V. Uhlenwinkel, A. Schulz, H. W. Zoch, F. Stern, J. Tenkamp and F. Walther: Addit. Manuf., 34 (2020) 101379.
- A. Plessis, P. Sperling, A. Beerlink, W. B. Preez and S. G. Roux: MethodsX, 5 (2018) 1336. https://doi.org/10.1016/j.mex.2018.10.021
- S. Vunnam, A. Saboo, C. Sudbrack and T. L. Starr: Addit. Manuf., 30 (2019) 100876.
- ISO 4490, Metallic powders - Determination of flow rate by means of a calibrated funnel (Hall flowmeter).
- ASTM B213, Standard test methods for flow rate of metal powders using the hall flowmeter funnel.
- ASTM B964, Standard test methods for flow rate of metal powders using the carney funnel.
- P. Mellin, O. Lyckfeldt, P. Harlin, H. Brodin, H. Blom and A. Strondl: Met. Powder Rep., 72 (2017) 322. https://doi.org/10.1016/j.mprp.2017.06.003
- ISO 13517, Metallic powders - Determination of flow rate by means of calibrated funnel (Gustavsson flowmeter).
- ASTM B212, Standard test method for apparent density of free-flowing metal powders using the hall flowmeter funnel.
- ISO 3923-1, Metallic powders - Determination of apparent density - Part 1: Funnel method.
- ASTM B417, Standard test method for apparent density of non-free-flowing metal powders using the carney funnel.
- ASTM B329, Standard test method for apparent density of metal powders and compounds using the scott volumeter.
- ASTM B703, Standard test method for apparent density of metal powders and related compounds using the arnold meter.
- ASTM B527, Standard test method for tap density of metal powders and compounds.
- ISO 3953, Metallic powders - Determination of tap density.
- M. A. Kaleem, M. Z. Alam, M. Khan, S. H. I. Jaffery and B. Rashid: Met Powder Rep., (2020).
- ASTM D6393, Standard test method for bulk solids characterization by carr indices.
- W. C. Sung: KATS Technical Reports, 75 (2015).
- F. Petzoldt and C. A. Kopp: Metal AM, 2 (2016) 45.
- ISO/ASTM 52900, Additive manufacturing - General principles - Terminology.
- ISO/ASTM 52901, Additive manufacturing - General principles - Requirements for purchased AM parts.
- ASTM F3049, Standard guide for characterizing properties of metal powders used for additive manufacturing processes.
- ASTM B855, Standard test method for volumetric flow rate of metal powders using the arnold meter and hall flowmeter funnel.
- ASTM B923, Standard test method for metal powder skeletal density by helium or nitrogen pycnometry.
- MPIF Standard 01, Method for sampling metal powders.
- MPIF Standard 02, Method for determination of loss of mass in a reducing atmosphere for metal powders (Hydrogen loss).
- MPIF Standard 03, Method for determination of flow rate of free-flowing metal powders using the hall apparatus.
- MPIF Standard 04, Method for determination of apparent density of free-flowing metal powders using the hall apparatus.
- MPIF Standard 05, Method for determination of sieve analysis of metal powders.
- MPIF Standard 28, Method for determination of apparent density of non-free-flowing metal powders using the carney apparatus.
- MPIF Standard 46, Method for determination of tap density of metal powders.
- MPIF Standard 48, Method for determination of apparent density of metal powders using the arnold apparatus.
- MPIF Standard 53, Method for measuring the volume of the apparent density cup used with the hall and carney apparatus.
- M. Krantz, H. Zhang and J. Zhu: Powder Technol., 194 (2009) 239. https://doi.org/10.1016/j.powtec.2009.05.001
- B. H. Kaye: Part. Part. Syst. Charact., 10 (1993) 191. https://doi.org/10.1002/ppsc.19930100407
- B. H. Kaye, J. G. Liimatainen and J. Lloyd: Part. Part. Syst. Charact., 12 (1995) 194. https://doi.org/10.1002/ppsc.19950120406
- A. N. Faqih, A. W. Alexander, F. J. Muzzio and M. S. Tomassone: Chem. Eng. Sci., 62 (2007) 1536. https://doi.org/10.1016/j.ces.2006.06.027
- ASTM D7891, Standard test method for shear testing of powders using the freeman technology FT4 powder rheometer shear cell.
- S. Hatami, O. Lyckfeldt, L. Tonnang and K. Fransson: Powder Metall., 60 (2017) 353. https://doi.org/10.1080/00325899.2017.1344451
- M. Ahmed, M. Pasha, W. Nan and M. Ghadiri: Powder Technol., 367 (2020) 671. https://doi.org/10.1016/j.powtec.2020.04.033
- N. E. Gorji, P. Saxena, M. Corfield, A. Clare, J. Rueff, J. Bogan, P. G. M. Gonzalez, M. Snelgrove, G. Hughes, R. O'Connor, R. Raghavendra and D. Brabazon: Mater. Charact., 161 (2020) 110167. https://doi.org/10.1016/j.matchar.2020.110167
- K. Riener, N. Albrecht, S. Ziegelmeier, R. Ramakrishnan, L. Haferkamp, A. B. Spierings and G. J. Leichtfried: Addit. Manuf., 34 (2020) 101286.