과제정보
This work was supported by the Ministry of Education of the Republic of Korea and the National Research Foundation of Korea (NRF-2018S1A5B8070203
참고문헌
- Aarseth, E. (2001). Virtual worlds, real knowledge: towards a hermeneutics of virtuality, European Review, 9(2), 227-232. https://doi.org/10.1017/s1062798701000205
- Ben-Eliyahu, A., Moore, D., Dorph, R., & Schunn, C. D. (2018). Investigating the multidimensionality of engagement: Affective, behavioral, and cognitive engagement across science activities and contexts, Contemporary Educational Psychology, 53, 87-105. https://doi.org/10.1016/j.cedpsych.2018.01.002
- Bessa, M., Melo, M., Augusto de Sousa, A., & Vasconcelos-Raposo, J. (2018). The effects of body position on Reflexive Motor Acts and the sense of presence in virtual environments, Computers & Graphics, 71, 35-41. https://doi.org/10.1016/j.cag.2017.11.003
- Boletsis, C. (2017). The new era of virtual reality locomotion: a systematic literature review of techniques and a proposed typology, Multimodal Technologies and Interaction, 1(4), 24. https://doi.org/10.3390/mti1040024
- Boletsis, C., & Cedergren, J. E. (2019). VR Locomotion in the new era of virtual reality: An empirical comparison of prevalent techniques. Advances in Human-Computer Interaction, 2019. Retrieved from https://www.hindawi.com/journals/ahci/2019/7420781/
- Borrego, A., Latorre, J., Llorens, R., Alcaniz, M., & Noe, E. (2016). Feasibility of a walking virtual reality system for rehabilitation: objective and subjective parameters. Journal of neuroengineering and rehabilitation, 13(1), 68. https://doi.org/10.1186/s12984-016-0174-1
- Bozgeyikli, E., Raij, A., Katkoori, S., & Dubey, R. (2016). Locomotion in virtual reality for individuals with autism spectrum disorder. Proceedings of the 2016 Symposium on Spatial User Interaction (pp.33-42). Tokyo, Japan: ACM.
- Bozgeyikli, E., Raij, A., Katkoori, S., & Dubey, R. (2019). Locomotion in virtual reality for room scale tracked areas. International Journal of Human-Computer Studies, 122, 38-49. doi:https://doi.org/10.1016/j.ijhcs.2018.08.002
- Brade, J., Lorenz, M., Busch, M., Hammer, N., Tscheligi, M., & Klimant, P. (2017). Being there again - Presence in real and virtual environments and its relation to usability and user experience using a mobile navigation task. International Journal of Human-Computer Studies, 101, 76-87. https://doi.org/10.1016/j.ijhcs.2017.01.004
- Cardoso, J. C. S., & Perrotta, A. (2019). A survey of real locomotion techniques for immersive virtual reality applications on head-mounted displays. Computers & Graphics, 85, 55-73. doi:https://doi.org/10.1016/j.cag.2019.09.005
- Chen, W., Plancoulaine, A., Ferey, N., Touraine, D., Nelson, J., & Bourdot, P. (2013). 6DoF navigation in virtual worlds: comparison of joystick-based and head-controlled paradigms. Proceedings of the 19th ACM Symposium on Virtual Reality Software and Technology (pp. 111-114). Singapore, Singapore: ACM.
- Darken, R. P., & Peterson, B. (2001). Spatial orientation, way finding, and representation. In K. Stanney (Ed.), Handbook of Virtual Environment Technology (pp.1-21). Florida, USA: CRC Press.
- Dyck, E. (2017). The OctaVis: a VR-device for rehabilitation and diagnostics of visuospatial impairments. Unpublished PhD thesis, Universitat Bielefeld, Bielefeld, Germany.
- Eccles, J., & Wang, M. T. (2012). Part I commentary: so what is student engagement anyway? In S. L. Christenson, & A. L. Reschly (Eds.), Handbook of research on student engagement (pp. 133-145). New York: Springer.
- Galvan, D. H., Boulic, R., Salomon, R., Blanke, O., & Herbelin, B. (2018). Self-attribution of distorted reaching movements in immersive virtual reality. Computers & Graphics, 76, 142-152. https://doi.org/10.1016/j.cag.2018.09.001
- Hu-Au, E., & Lee, J. J. (2017). Virtual reality in education: a tool for learning in the experience age. International Journal of Innovation in Education, 4(4), 215-226. https://doi.org/10.1504/IJIIE.2017.091481
- Interrante, V., Ries, B., & Anderson, L. (2006, March). Distance perception in immersive virtual environments, revisited. Proceedings of the IEEE Virtual Reality Conference (VR 2006) (pp. 3-10). Alexandria, VA, USA: IEEE.
- Kim, J. (2010). The operationalization of evaluation elements for user interface design of Interactive TVs. Archives of Design Research, 23(3), 115-126.
- Kitson, A., Abraham M. H., Ekaterina, R. S., Ernst K., & Bernhard, E. R. (2017a). Comparing leaning-based motion cueing interfaces for virtual reality locomotion. Proceedings of the IEEE Symposium on 3D User Interfaces (pp. 73-82). Los Angeles, USA: IEEE.
- Kitson, A., Hashemian, A. M., Stepanova, E. R., Kruijff, E., & Riecke, B. E. (2017b). Lean into it: exploring leaning-based motion cueing interfaces for virtual reality movement. Proceedings of the 2017 IEEE Virtual Reality (VR) (pp. 215-216). Los Angeles, USA: IEEE.
- Kruijff, E., Marquardt, A., Trepkowski, C., Lindeman, R. W., Hinkenjann, A., Maiero, J., & Riecke, B. E. (2016). On your feet!: Enhancing vection in leaning-based interfaces through multisensory stimuli. Proceedings of the 2016 Symposium on Spatial User Interaction (pp. 149-158). Tokyo, Japan: ACM.
- Langbehn, E., Lubos, P., Bruder, G., & Steinicke, F. (2017). Bending the curve: sensitivity to bending of curved paths and application in room-scale VR. IEEE transactions on visualization and computer graphics, 23(4), 1389-1398. https://doi.org/10.1109/TVCG.2017.2657220
- Langbehn, E., Lubos, P., & Steinicke, F. (2018). Evaluation of locomotion techniques for room-scale VR: Joystick, teleportation, and redirected walking. In Laval Virtual: Proceedings of the Virtual Reality International Conference-Laval Virtual (pp. 4.). London, England: ACM.
- Lee, S., & Kim, G. J. (2008). Effects of visual cues and sustained attention on spatial presence in virtual environments based on spatial and object distinction. Interacting with Computers, 20(5), 491-502. https://doi.org/10.1016/j.intcom.2008.07.003
- Lim, S. (1996). Virtual reality as a new learning environment. Journal of Educational Technology, 12(2), 189-209. https://doi.org/10.17232/KSET.12.2.189
- Ling, Y., Nefs, H. T., Brinkman, W. P., Qu, C., & Heynderickx, I. (2013). The relationship between individual characteristics and experienced presence. Computers in Human Behavior, 29(4), 1519-1530. https://doi.org/10.1016/j.chb.2012.12.010
- Monteiro, P., Carvalho, D., Melo, M., Branco, F., & Bessa, M. (2018). Application of the steering law top virtual reality walking navigation interfaces. Computers and Graphics, 77, 80-87. https://doi.org/10.1016/j.cag.2018.10.003
- Nabiyouni, M., Saktheeswaran, A., Bowman, D. A., & Karanth, A. (2015). Comparing the performance of natural, semi-natural, and non-natural locomotion techniques in virtual reality. Proceedings of the 2015 IEEE Symposium on 3D User Interfaces (pp. 3-10). Arles, France: IEEE.
- Paes, D., Arantes, E., & Irizarry, J. (2017). Immersive environment for improving the understanding of architectural 3D models: Comparing user spatial perception between immersive and traditional virtual reality systems. Automation in Construction, 84, 292-303. https://doi.org/10.1016/j.autcon.2017.09.016
- Park, S. (2010). A developed of virtual reality contents of cultural heritage utilize the haptic interface system - Focused on Keum-san-sa content-. Journal of Korea Design Forum, 26, 245-254. https://doi.org/10.21326/ksdt.2010..26.023
- Putwain, D. W., Symes, W., Nicholson, L. J., & Becker, S. (2018). Achievement goals, behavioural engagement, and mathematics achievement: A mediational analysis. Learning and Individual Differences, 68, 12-19. https://doi.org/10.1016/j.lindif.2018.09.006
- Reyes, M. R., Brackett, M. A., Rivers, S. E., White, M., & Salovey, P. (2012). Classroom emotional climate, student engagement, and academic achievement. Journal of Educational Psychology, 104(3), 700-712. https://doi.org/10.1037/a0027268
- Riecke, B. E., Bodenheimer, B., McNamara, T. P., Williams, B., Peng, P., & Feuereissen, D. (2010). Do we need to walk for effective virtual reality navigation? physical rotations alone may suffice. In International Conference on Spatial Cognition: Spatial cognition VII (pp. 234-247). Portland, USA: Springer.
- Ruddle, R. A., & Lessels, S. (2009). The benefits of using a walking interface to navigate virtual environments. ACM Transactions on Computer-Human Interaction, 16(1), 5.
- Ryu, J., & Yu, S. (2018). The effect of gesture based interface on presence perception and performance in the virtual reality earning Environment. The Korea Educational Review, 23(1), 35-56. https://doi.org/10.29318/ker.23.1.2
- Schnack, A., Wright, M. J., & Holdershaw, J. L. (2021). Does the locomotion technique matter in an immersive virtual store environment? - Comparing motion-tracked walking and instant teleportation. Journal of Retailing and Consumer Services, 58, 102266. https://doi.org/10.1016/j.jretconser.2020.102266
- Schubert, T., Friedmann, F, & Regenbrecht, H. (2001). The experience of presence: Factor analytic insights. Teleoperators & Virtual Environments, 10(3), 266-281. https://doi.org/10.1162/105474601300343603
- Selzer, M. N., Gazcon, N. F., & Larrea, M. L. (2019). Effects of virtual presence and learning outcome using low-end virtual reality systems. Displays, 59, 9-15. https://doi.org/10.1016/j.displa.2019.04.002
- Shin, D. (2019). How do users experience the interaction with an immersive screen? Computers in Human Behavior, 98, 302-310. https://doi.org/10.1016/j.chb.2018.11.010
- Silva, G. R., Donat, J. C., Rigoli, M. M., de Oliveira, F. R., & Kristensen, C. H. (2016). A questionnaire for measuring presence in virtual environments: factor analysis of the presence questionnaire and adaptation into Brazilian Portuguese. Virtual Reality, 20, 237-242. doi: 10.1007/s10055-016-0295-7.
- Skinner, E. A., Kindermann, T. A., & Furrer, C. J. (2009). A motivational perspective on engagement and disaffection. Conceptualization and assessment of children's behavioral and emotional participation in academic activities in the classroom. Educational and Psychological Measurement, 69, 493-525. doi: 10.1177/0013164408323233.
- Topu, F. B., & Goktas, Y. (2019). The effects of guided-unguided learning in 3d virtual environment on students' engagement and achievement. Computers in Human Behavior, 92, 1-10. https://doi.org/10.1016/j.chb.2018.10.022
- Triyason, T., & Krathu, W. (2017). The impact of screen size toward QoE of cloud-based virtual desktop. Procedia Computer Science, 111, 203-208. https://doi.org/10.1016/j.procs.2017.06.054
- Vasalampi, K., Muotka, J., Poysa, S., Lerkkanen, M. K., Poikkeus, A. M., & Nurmi, J. E. (2016). Assessment of students' situation-specific classroom engagement by an InSitu Instrument. Learning and Individual Differences, 52, 46-52. https://doi.org/10.1016/j.lindif.2016.10.009
- Witmer, B. G., & Singer, M. J. (1998). Measuring presence in virtual environments: A presence questionnaire. Presence: Teleoperators and Virtual Environments, 7(3), 225-240. doi:10.1162/105474698565686.