DOI QR코드

DOI QR Code

Swarm Satellite Observations of the 21 August 2017 Solar Eclipse

  • Hussien, Fayrouz (Physics Department, Faculty of Science, Fayoum University) ;
  • Ghamry, Essam (National Research Institute of Astronomy and Geophysics (NRIAG)) ;
  • Fathy, Adel (Physics Department, Faculty of Science, Fayoum University) ;
  • Mahrous, Salah (Physics Department, Faculty of Science, Fayoum University)
  • 투고 : 2020.01.13
  • 심사 : 2020.02.13
  • 발행 : 2020.03.15

초록

On 21 August 2017, during 16:49 UT and 20:02 UT period, a total solar eclipse started. The totality shadow occurred over the United States in time between ~17:15 UT and ~18:47 UT. When the solar radiation is blocked by the moon, observations of the ionospheric parameters will be important in the space weather community. Fortunately, during this eclipse, two Swarm satellites (A and C) flied at about 445 km through lunar penumbra at local noon of United States in the upper ionosphere. In this work, we investigate the effect of the solar eclipse on electron density, slant total electron content (STEC) and electron temperature using data from Swarm mission over United States. We use calibrated measurements of plasma density and electron temperature. Our results indicate that: (1) the electron density and STEC have a significant depletion associated with the eclipse; which could be due to dominance of dissociative recombination over photoionization caused by the reduction of ionizing extreme ultraviolet (EUV) radiation during the eclipse time (2) the electron temperature decreases, compared with a reference day, by up to ~150 K; which could be due to the decrease in photoelectron heating from reduced photoionization.

키워드

참고문헌

  1. Abdullah M, Strangeways HJ, Walsh DMA, Improving ambiguity resolution rate with an accurate ionospheric differential correction, J. Navig. 62, 151-166 (2009). https://doi.org/10.1017/S0373463308004979
  2. Afraimovich EL, Kosogorov EA, Lesyuta OS. Effects of the August 11, 1999 total solar eclipse as deduced from total electron content measurements at the GPS network, J. Atmos. Sol.-Terr. Phy. 64, 1933-1941. (2002) https://doi.org/10.1016/S1364-6826(02)00221-3
  3. Afraimovich EL, Palamartchouk KS, Perevalova NP, Chernukhov VV, Lukhnev AV, et al., Ionospheric effects of the solar eclipse of March 9, 1997, as deduced from GPS data, Geophys. Res. Lett. 25, 465-468 (1998). https://doi.org/10.1029/98GL00186
  4. Bamford RA, The effect of the 1999 total solar eclipse on the ionosphere, Phy. Chem. Earth Part C Sol. Terr. Planet. Sci. 26, 373-377 (2001). https://doi.org/10.1016/S1464-1917(01)00016-2
  5. Cherniak I, Zakharenkova I, Ionospheric total electron content response to the great American solar eclipse of 21 August 2017, Geophys. Res. Lett. 45, 1199-1208 (2018). https://doi.org/10.1002/2017GL075989
  6. Cohen EA, The study of the effect of solar eclipses on the ionosphere based on satellite beacon observations, Radio Sci. 19, 769-777 (1984). https://doi.org/10.1029/RS019i003p00769
  7. Coster AJ, Goncharenko L, Zhang SR, Erickson PJ, Rideout W, et al., GNSS observations of ionospheric variations during the 21 August 2017 solar eclipse, Geophys. Res. Lett. 44, 12041-12048 (2017). https://doi.org/10.1002/2017GL075774
  8. Davis CJ, Clarke EM, Bamford RA, Lockwood M, Bell SA, Long term changes in EUV and X-ray emissions from the solar corona and chromosphere as measured by the response of the Earth's ionosphere during total solar eclipses from 1932 to 1999, Ann. Geophys. 19, 263-267 (2001). https://doi.org/10.5194/angeo-19-263-2001
  9. Davis CJ, Lockwood M, Bell SA, Smith JA, Clarke EM, Ionospheric measurements of relative coronal brightness during the total solar eclipses of 11 August, 1999 and 9 July, 1945, Ann. Geophys. 18, 182-190 (2000). https://doi.org/10.1007/s00585-000-0182-z
  10. Evans JV, An F region eclipse, J. Geophys. Res. 70, 131-142 (1965a). https://doi.org/10.1029/JZ070i001p00131
  11. Evans JV, On the behavior of $\mathit{f}_0\;F_2$ during solar eclipses, J. Geophys. Res. 70, 733-738. (1965b). https://doi.org/10.1029/JZ070i003p00733
  12. Farges T, Jodogne JC, Bamford R, Le Roux Y, Gauthier F, et al., Disturbances of the western European ionosphere during the total solar eclipse of 11 August 1999 measured by a wide ionosonde and radar network, J. Atmos. Sol.-Terr. Phys. 63, 915-924 (2001). https://doi.org/10.1016/S1364-6826(00)00195-4
  13. Farges T, Le Pichon A, Blanc E, Perez S, Alcoverro B, Response of the lower atmosphere and the ionosphere to the eclipse of August 11, 1999, J. Atmos. Sol.-Terr. Phys. 65, 717-726 (2003). https://doi.org/10.1016/S1364-6826(03)00078-6
  14. Fathy A, Ghamry E, A statistical study of single crest phenomenon in the equatorial ionospheric anomaly region using Swarm A satellite, Adv. Space Res. 59, 1539-1547 (2017). https://doi.org/10.1016/j.asr.2016.12.020
  15. Fathy A, Ghamry E, Arora K, Mid and low-latitudinal ionospheric field-aligned currents derived from the Swarm satellite constellation and their variations with local time, longitude, and season, Adv. Space Res. 64, 1600-1614 (2019). https://doi.org/10.1016/j.asr.2019.07.022
  16. Friis-Christensen E, Luhr H, Knudsen D, Haagmans R, Swarm - an Earth observation mission investigating geospace, Adv. Space Res. 41, 210-216 (2008). https://doi.org/10.1016/j.asr.2006.10.008
  17. Hairston MR, Mrak S, Coley WR, Burrell A, Holt B, et al., Topside ionospheric electron temperature observations of the 21 August 2017 eclipse by DMSP spacecraft, Geophys. Res. Lett. 45, 7242-7247 (2018). https://doi.org/10.1029/2018GL077381
  18. Huba JD, Drob D, SAMI3 prediction of the impact of the 21 August 2017 total solar eclipse on the ionosphere/plasmasphere system, Geophys. Res. Lett. 44, 5928-5935 (2017). https://doi.org/10.1002/2017GL073549
  19. Hunter AN, Holman BK, Feldgate DG, Kelleher R, Faraday rotation studies in Africa during the solar eclipse of June 30, 1973, Nature 250, 205-206 (1974). https://doi.org/10.1038/250205a0
  20. Klobuchar JA, Whitney HE, Ionospheric electron content measurements during a solar eclipse, J. Geophys. Res. 70, 1254-1257 (1965). https://doi.org/10.1029/JZ070i005p01254
  21. Le H, Liu L, Ding F, Ren Z, Chen Y, et al., Observations and modeling of the ionospheric behaviors over the East Asia zone during the 22 July 2009 solar eclipse, J. Geophys. Res. 115, A10313 (2010). https://doi.org/10.1029/2010JA015609
  22. Lomidze L, Knudsen DJ, Burchill J, Kouznetsov A, Buchert SC, Calibration and validation of Swarm plasma densities and electron temperatures using ground-based radars and satellite radio occultation measurements, Radio Sci. 53, 15-36 (2018). https://doi.org/10.1002/2017RS006415
  23. Oliver WL, Bowhill SA, The F1 region during a solar eclipse, Radio Sci. 9, 189-195. (1974). https://doi.org/10.1029/RS009i002p00189
  24. Pradipta R, Yizengaw E, Doherty P, Ionospheric density irregularities, turbulence, and wave disturbances during the total solar eclipse over North America on 21 August 2017, Geophys. Res. Lett. 45, 7909-7917 (2018). https://doi.org/10.1029/2018GL079383
  25. Salah JE, Oliver WL, Foster JC, Holt JM, Emery BA, et al., Observations of the May 30, 1984, annular solar eclipse at Millstone Hill, J. Geophys. Res. 91, 1651-1660 (1986). https://doi.org/10.1029/JA091iA02p01651
  26. Schunk RW, Nagy AF, Ionospheres: Physics, Plasma Physics, and chemistry (Cambridge University Press, Cambridge, MA, 2000).
  27. Tsai HF, Liu JY, Ionospheric total electron content response to solar eclipses, J. Geophys. Res. 104, 12657-12668 (1999). https://doi.org/10.1029/1999JA900001
  28. van den Ijssel J, Forte B, Montenbruck O, Impact of swarm GPS receiver updates on POD performance, Earth Planets Space. 68, 85 (2016). https://doi.org/10.1186/s40623-016-0459-4
  29. Yigit E, Medvedev AS, Internal wave coupling processes in Earth's atmosphere, Adv. Space Res. 55, 983-1003 (2015). https://doi.org/10.1016/j.asr.2014.11.020
  30. Zhou YL, Luhr H, Xiong C, Pfaff RF, Ionospheric storm effects and equatorial plasma irregularities during the 17-18 March 2015 event, J. Geophys. Res. Space Phys. 121, 9146-9163 (2016). https://doi.org/10.1002/2016JA023122