References
- ABAQUS Theory Manual (2014), Version 6.14 Online User's Manual.
- ASCE (2015), Design of Latticed Steel Transmission Structures, ASCE/SEI 10-15, American Society of Civil Engineers, Reston, Virginia.
- Banik, S.S., Hong, H.P. and Kopp, G.A. (2010), "Assessment of capacity curves for transmission line towers under wind loading", Wind Struct., 13(1), 1-20. https://doi.org/10.12989/was.2010.13.1.001.
- Battista, R.C., Rodrigues, R.S. and Pfeil, M.S. (2003), "Dynamic behavior and stability of transmission line towers under wind forces", J. Wind Eng. Ind. Aerod., 91(8), 1051-1067. https://doi.org/10.1016/s0167-6105(03)00052-7.
- Brewer A. (2017), "Dynamic wind load modelling of high overhead transmission line towers", Ph.D. Dissertation, University of Iceland, Iceland.
- Carvalho, H., Correia, J., Jesus, A. de and Calçada, R. (2018), "Aerodynamic damping in cables of overhead transmission lines subjected to wind loads", Wind Eng., 42(4), 268-275. https://doi.org/10.1177/0309524x18777312.
- Chen, B., Xiao, X., Li, P. and Zhong, W. (2015), "Performance evaluation on transmission tower-line system with passive friction dampers subjected to wind excitations", Shock Vib., 2015, 1-13. https://doi.org/10.1155/2015/310458.
- Chopra Anil, K. (2017), Dynamics of Structures, Pearson, Boston, Massachusets, U.S.A.
- Deng, H.Z., Si, R.J., Hu, X.Y. and Duan, C.Y. (2013), "Wind tunnel study on wind-induced vibration responses of a UHV transmission tower-line system", Advan. Struct. Eng., 16(7), 1175-1185. https://doi.org/10.1260/1369-4332.16.7.1175.
- Deng, H.Z., Xu, H.J., Duan, C.Y., Jin, X.H. and Wang, Z.H. (2016), "Experimental and numerical study on the responses of a transmission tower to skew incident winds", J. Wind Eng. Ind. Aerod., 157, 171-188, https://doi.org/10.1016/j.jweia.2016.05.010.
- Deodatis, G. (1996), "Simulation of ergodic multivariate stochastic processes", J. Eng. Mech., 122(8), 778-787. https://doi.org/10.1061/(asce)0733-9399(1996)122:8(778).
- El Damatty, A.A. and Hamada, A. (2012), "Behaviour of guyed transmission line structures under tornado wind loads-case studies", Electric. Transm.Substation Struct.,Ohio, November.
- Fu, X., Hong Nan L. and Gang L. (2016), "Fragility analysis and estimation of collapse status for transmission tower subjected to wind and rain loads", Struct. Safety, 173(2018), 1-10, http://dx.doi.org/10.1016/j.strusafe.2015.08.002.
- Fu, Xing, and Hong Nan Li. (2018), "Uncertainty analysis of the strength capacity and failure path for a transmission tower under a wind load", J. Wind Eng. Ind. Aerod., 173(February), 147-155. https://doi.org/10.1016/j.jweia.2017.12.009.
- Gani, F. and F. Legeron. (2010), "Dynamic response of transmission lines guyed towers under wind loading", Canadian J. Civil Eng., 37(3), 450-465, https://doi.org/10.1139/l09-160.
- Hamada, A., King, J.P.C., El Damatty, A.A., Bitsuamlak, G. and Hamada, M. ( (2017), "The response of a guyed transmission line system to boundary layer wind", Eng. Struct., 139(2017), 135-152, http://dx.doi.org/10.1016/j.engstruct.2017.01.047.
- Hamzah, N.H. and Usman, F. (2019), "Geospatial analysis of wind velocity to determine wind loading on transmission tower", Wind Struct., 28(6), 381-388, https://doi.org/10.12989/was.2019.28.6.381.
- Islamic Republic of Iran Meteorological Organization (IRIMO), https://irimo.ir/eng/index.php.
- Kadaba Radhakrishna, R. (1988), "Response of electrical transmission line conductors to extreme wind using filed data", Ph.D. Dissertation, Texas Tech University, Austin.
- Kaimal, J.C., Wyngaard, J.C.J., Izumi, Y. and Cote, O.R. (1972), "Spectral characteristics of surface‐layer turbulence", Quart. J. Royal Meteorol. Soc., 98(417), 563-589, https://doi.org/10.1256/smsqj.41706.
- Kaminski, J., Riera, J.D., de Menezes, R.C.R. and Miguel, L.F.F. (2008), "Model uncertainty in the assessment of transmission line towers subjected to cable rupture", Eng. Struct., 30(10), 2935-2944. https://doi:10.1016/j.engstruct.2008.03.011.
- Kareem, A. and Tamura, Y. (2013), Advanced Structural Wind Engineering, Springer, Tokyo, Japan.
- Mara, T.G. and Hong, H.P. (2013), "Effect of wind direction on the response and capacity surface of a transmission tower", Eng. Struct., 57(2013), 493-501, http://dx.doi.org/10.1016/j.engstruct.2013.10.004.
- Momomura, Y., Marukawa, H., Okamura, T., Hongo, E. and Ohkuma, T. (1997), "Full-scale measurements of wind-induced vibration of a transmission line system in a mountainous area", J. Wind Eng. Ind. Aerod., 72(1997), 241-252. http://dx.doi.org/10.1016/s0167-6105(97)00240-7.
- Okamura, T., Ohkuma, T., Hongo, E. and Okada, H. (2003), "Wind response analysis of a transmission tower in a mountainous area", J. Wind Eng. Industrial Aerod., 91(1-2), 53-63, http://dx.doi.org/10.1016/s0167-6105(02)00322-7.
- Savory, E., Parke, G.A.R., Disney, P., Toy, N. and Zeinoddini, M. (1998), "Field measurements of wind-induced transmission tower foundation loads", Wind Struct., 1(2), 183-199, http://dx.doi.org/10.12989/was.1998.1.2.183.
- Simiu, E. (1974), "Wind spectra and dynamic alongwind response", J. Struct. Div., 100.
- Task Committee on Electrical Transmission Line Structural Loading. (2020). "Guidelines for electrical transmission line structural loading", Amer. Soc. Civil Eng.,
- Tian, L., Pan, H., Qiu, C., Ma, R. and Yu, Q. (2018), "Windinduced collapse analysis of long-span transmission tower-line system considering the member buckling effect", Advan. Struct. Eng., 22(1), 30-41, http://dx.doi.org/10.1177/1369433218774961.
- Tomokiyo, E., Maeda, J., Ishida, N. and Imamura, Y. (2004), "Typhoon damage analysis of transmission towers in mountainous regions of Kyushu, Japan", Wind Struct., 7(5), 345-357, http://dx.doi.org/10.12989/was.2004.7.5.345.
- Vamvatsikos, D. (2014), "Incremental dynamic analysis", Encyclopedia Earthq. Eng., 1-8, http://dx.doi.org/10.1007/978-3-642-36197-5_136-1.
- Von Karman, T. (1948), "Progress in the statistical theory of turbulence", Proceedings of National Academy of Sciences of the United States of America, 34(11), 530-539, https://doi.org/10.1073/pnas.34.11.530.
- Yang, F., Yang, J., Niu, H., and Zhang, H. (2015), "Design wind loads for tubular-angle steel cross-arms of transmission towers under skewed wind loading", J. Wind Eng. Ind. Aerod., 140(1), 0-18, http://dx.doi.org/10.1016/j.jweia.2015.01.012.
- Yang, Y.H., Xin, Y.L., Zhou, J.J., Tang, W.H. and Li, B. (2017), "Failure probability estimation of transmission lines during typhoon based on tropical cyclone wind model and component vulnerability model", 2017 IEEE PES Asia-pacific power and energy engineering conference (APPEEC), Chengdu, China.
- Yasui, H., Marukawa, H., Momomura, Y. and Ohkuma, T. (1999), "Analytical study on wind-induced vibration of power transmission towers", J. Wind Eng. Ind. Aerod., 83(1999), 431-441, https://doi.org/10.5359/jawe.1998.76-3.
- Zhang, L.L. and Li, J. (2007), "Probability density evolution analysis on dynamic response and reliability estimation of windexcited transmission towers", Wind Struct., 10(1), 45-60. http://dx.doi.org/10.12989/was.2007.10.1.045.
- Zhang, P., Ren, L., Li, H., Jia, Z. and Jiang, T. (2015), "Control of wind-induced vibration of transmission tower-line system by using a spring pendulum", Mathem. Prob. Eng., 2015, 1-10, http://dx.doi.org/10.1155/2015/671632.
- Zhang, Z., Li, H., Li, G., Wang, W. and Tian, L. (2013), "The numerical analysis of transmission tower-line system windinduced collapsed performance", Mathem. Prob. Eng., 2013, 1-11. http://dx.doi.org/10.1155/2013/413275.